CAREER: Co-Optimized Sensing and Reconstruction for Next-Generation Computational Cameras
职业:下一代计算相机的协同优化传感和重建
基本信息
- 批准号:2048237
- 负责人:
- 金额:$ 56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Imaging technology plays a critical role in advancing science. However, as science continues to push the boundaries of knowledge, traditional imaging sensors are reaching their limits. For example, traditional telescopes cannot be constructed large enough to resolve a black hole’s shadow; traditional microscopes are not able to see transparent cells, and traditional cameras cannot be used to study the inner core of a cloud due to scattering. Breaking these fundamental limits has only been possible through the emergence of computational cameras, which replace optics with computational algorithms; this new paradigm shift has enabled image formation processes that were previously infeasible for conventional optical imaging. The full potential of computational cameras is far from being realized; thus far they have primarily been identified and developed though human ingenuity. Consequently, computational imaging pipelines are often significantly under-optimized, and there is no doubt that many such “cameras” have yet to even be identified. Developing the next generation of computational cameras requires a fundamental shift away from relying on human intuition and overly simplified models in the design of imaging pipelines. This project aims to develop modern learning-based approaches to jointly optimize sensor and algorithm designs in computational camera pipelines in order to automatically discover new imaging strategies.The objective of this project is to develop a data-driven, generalizable learning framework that solves for a jointly optimized sensor design and reconstruction algorithm for computational imaging pipelines. The generalizable co-design framework will be developed to easily incorporate domain knowledge and respect physical constraints. In collaboration with domain-experts, the investigator will study the application of this framework to problems ranging from astronomical imaging to seismic imaging. The investigator will pursue fundamental work in four areas: 1) single-shot probabilistic co-design to optimize sensor design jointly with reconstruction methods, 2) online sequential probabilistic co-design for optimizing the next sensor measurement conditioned on previous measurements for a particular target, 3) co-design with a stochastically evolving target, and 4) co-design with a mismatched forward model. The investigator will make use of emerging computational techniques and machinery in machine learning, signal processing, optimization, applied math, and controls to efficiently co-optimize the computational imaging pipeline. This research will transform the way novel imaging pipelines are identified and developed, and will result in the development of new methods that will impact a wide array of important imaging problems, including astronomical, medical, seismic, and microscopic imaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
成像技术在推动科学发展方面发挥着关键作用。然而,随着科学不断突破知识的边界,传统的成像传感器正在达到其极限。例如,传统的望远镜无法构造得足够大以分辨黑洞的阴影;传统的显微镜无法看到透明的细胞,传统的相机由于散射而无法用于研究云的内核。只有通过计算相机的出现,才有可能打破这些基本限制,计算相机用计算算法取代光学;这种新的范式转变使图像形成过程成为可能,而这在以前是不可行的。计算相机的全部潜力远未实现;迄今为止,它们主要是通过人类的聪明才智来识别和开发的。因此,计算成像流水线通常明显优化不足,并且毫无疑问,许多这样的“相机”甚至还没有被识别。开发下一代计算相机需要从根本上改变依赖人类直觉和过度简化的模型来设计成像管道。该项目旨在开发基于现代学习的方法,以联合优化计算相机管道中的传感器和算法设计,以自动发现新的成像策略。该项目的目标是开发一个数据驱动的,可推广的学习框架,以解决计算成像管道中的联合优化传感器设计和重建算法。将开发可推广的协同设计框架,以方便地将领域知识和尊重物理约束。与领域专家合作,研究人员将研究这一框架在从天文成像到地震成像等问题上的应用。研究人员将在四个领域开展基础工作:1)单次概率协同设计,以优化传感器设计与重建方法,2)在线顺序概率协同设计,以优化特定目标的下一个传感器测量,3)与随机演化目标的协同设计,以及4)与不匹配的前向模型的协同设计。研究人员将利用机器学习,信号处理,优化,应用数学和控制中新兴的计算技术和机器,以有效地共同优化计算成像管道。这项研究将改变识别和开发新型成像管道的方式,并将导致新方法的开发,这些方法将影响广泛的重要成像问题,包括天文,医学,地震和显微成像。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discovering Structure From Corruption for Unsupervised Image Reconstruction
- DOI:10.1109/tci.2023.3325752
- 发表时间:2023-04
- 期刊:
- 影响因子:5.4
- 作者:Oscar Leong;Angela F. Gao;He Sun;K. Bouman
- 通讯作者:Oscar Leong;Angela F. Gao;He Sun;K. Bouman
Score-Based Diffusion Models as Principled Priors for Inverse Imaging
- DOI:10.1109/iccv51070.2023.00965
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Berthy T. Feng;Jamie Smith;Michael Rubinstein;Huiwen Chang;K. Bouman;W. T. Freeman
- 通讯作者:Berthy T. Feng;Jamie Smith;Michael Rubinstein;Huiwen Chang;K. Bouman;W. T. Freeman
Inference of Black Hole Fluid-Dynamics from Sparse Interferometric Measurements
- DOI:10.1109/iccv48922.2021.00234
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:A. Levis;Daeyoung Lee;J. Tropp;C. Gammie;K. Bouman
- 通讯作者:A. Levis;Daeyoung Lee;J. Tropp;C. Gammie;K. Bouman
DeepGEM: Generalized Expectation-Maximization for Blind Inversion
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Angela F. Gao;J. Castellanos;Yisong Yue;Z. Ross;K. Bouman
- 通讯作者:Angela F. Gao;J. Castellanos;Yisong Yue;Z. Ross;K. Bouman
End-to-End Sequential Sampling and Reconstruction for MR Imaging
- DOI:
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Tianwei Yin;Zihui Wu;He Sun;Adrian V. Dalca;Yisong Yue;K. Bouman
- 通讯作者:Tianwei Yin;Zihui Wu;He Sun;Adrian V. Dalca;Yisong Yue;K. Bouman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine Bouman其他文献
Katherine Bouman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于多尺寸Ag基团簇电催化还原CO2的机器学习理论研究
- 批准号:QN25A040007
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
海洋溶解CO2传感器应用于原位长期监测的适应性改进
- 批准号:MS25D060007
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Co金属辅酶负载Fe电极的构筑及其催化还原脱卤机理研究
- 批准号:MS25E080050
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
CO2+TBAB水合物浆体热流体机理与蓄释冷特性研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
页岩微纳米孔隙水的移动性及CO2-水-岩反应对CH4/CO2运移的影响机制
- 批准号:JCZRQN202500299
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于接力催化的CO2加氢直接高选择性制乙烯多功能催化剂的研究
- 批准号:JCZRYB202500767
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
LDHs材料衍生的高分散Cu-Co/MgxAly催化剂构筑及其催化糠醛加氢性能研究
- 批准号:2025JJ60079
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒽醌功能化的介孔氮化碳催化有机污染物光降解耦合CO2光还原转化为燃料的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
深部咸水层CO2 封存盖层多尺度蠕变特性及临界幂律灾变机制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
不同相态CO2对深部低渗不可采煤层气藏二氧化碳封存机制及潜力评估
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
COMPAS: co integration of microelectronics and photonics for air and water sensors
COMPAS:微电子学和光子学的共同集成,用于空气和水传感器
- 批准号:
10108154 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
EU-Funded
Rural Co-Design and Collaboration: Maximising Rural Community Assets to Reduce Place-Based Health Inequalities
农村共同设计与协作:最大化农村社区资产以减少基于地点的健康不平等
- 批准号:
AH/Z505559/1 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Research Grant
Human-Robot Co-Evolution: Achieving the full potential of future workplaces
人机协同进化:充分发挥未来工作场所的潜力
- 批准号:
DP240100938 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Discovery Projects
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Studentship
Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
- 批准号:
MR/Y020286/1 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Fellowship
EDIBLES: Environmentally Driven Body-Scale Electromagnetic Co-Sensing
食用:环境驱动的人体规模电磁协同感应
- 批准号:
EP/Y002008/1 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Research Grant
SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
- 批准号:
2332534 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
- 批准号:
2338951 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Co-evolution of supermassive black holes and galaxies with the James Webb Space Telescope
超大质量黑洞和星系与詹姆斯·韦伯太空望远镜的共同演化
- 批准号:
23K22533 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
保育者と子どものCo-Agencyを育成する研修カリキュラムに関する研究
培养保育员与儿童合作能力的培训课程研究
- 批准号:
24K05800 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




