Optimized Data Acquisition for Image Reconstruction in Magnetic Particle Imaging (MPI) Based on Compressed Sensing
基于压缩感知的磁粒子成像(MPI)图像重建的优化数据采集
基本信息
- 批准号:250691157
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Using Magnetic Particle Imaging (MPI) a local concentration of magnetic nanoparticles can be displayed quantitatively in real-time with high sensitivity and with very good spatial resolution. The basic idea is to utilize the non-linear magnetization characteristics of the particles which are used as tracers. For this purpose, the technique employs two magnetic fields, on the one hand a static selection field, on the other hand a dynamic alternating field. Once the nanoparticles are brought into the alternating field they produce a non-linear magnetization, which can be measured using a receive coil. Apart from the fundamental frequency of the alternating field the measured signal also contains harmonics, i.e. oscillations with multiples of the fundamental frequency, which is caused by the non-linearity. After separation of the harmonics from the applied basic signal the concentration of the nanoparticles can be determined. Spatial encoding is achieved using the static selection field. In first experimental studies MPI has already shown advantages over other imaging modalities. However, it has not yet reached its full potential with respect to spatial resolution, signal-to-noise ratio and acquisition times. It can be expected that recent advancements in signal processing and sampling theory, especially in the field of compressed sensing (CS), will contribute to the enhancement of image quality and speed. Sparse coding and compressed sensing have already improved other imaging modalities like e.g. Magnetic Resonance Imaging (MRI) considerably compared to the state-of-the-art of science. So far, the standard wavelet transformations have predominantly been applied as suitable transformations. Increasingly though transformations are sought that suit the signal characteristics of the respective modality. This strategy shall also be pursued in this project. Based on data of a simulation chain, which is to be developed, and realizations of different MPI scanner topologies by the Institute of Medical Engineering adapted transformations can be optimized for sparse coding, capitalizing on the expertise of the Institute for Signal Processing.
使用磁性粒子成像(MPI),可以以高灵敏度和非常好的空间分辨率实时定量显示磁性纳米粒子的局部浓度。其基本思想是利用作为示踪剂的颗粒的非线性磁化特性。为此,该技术采用两个磁场,一方面是静态选择场,另一方面是动态交变场。一旦纳米颗粒进入交变场,它们就会产生非线性磁化,这可以使用接收线圈来测量。除了交变场的基频之外,测量信号还包含谐波,即具有基频倍数的振荡,这是由非线性引起的。在从所施加的基本信号中分离谐波之后,可以确定纳米颗粒的浓度。使用静态选择字段实现空间编码。在最初的实验研究中,MPI已经显示出优于其他成像方式的优势。然而,它在空间分辨率、信噪比和采集时间方面尚未充分发挥潜力。可以预期,最近在信号处理和采样理论,特别是在压缩传感(CS)领域的进步,将有助于提高图像质量和速度。与最先进的科学相比,稀疏编码和压缩感测已经大大改善了其他成像模态,例如磁共振成像(MRI)。到目前为止,标准小波变换主要被用作合适的变换。然而,越来越多地寻求适合相应模态的信号特性的变换。在本项目中也将执行这一战略。基于要开发的模拟链的数据,以及医学工程研究所对不同MPI扫描器拓扑的实现,可以利用信号处理研究所的专业知识,针对稀疏编码优化自适应变换。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Trajectory Study for Obtaining MPI System Matrices in a Compressed-Sensing Framework
- DOI:10.18416/ijmpi.2017.1706005
- 发表时间:2017-06
- 期刊:
- 影响因子:0
- 作者:M. Maass;M. Ahlborg;A. Bakenecker;Fabrice Katzberg;Huy Phan;T. Buzug;A. Mertins
- 通讯作者:M. Maass;M. Ahlborg;A. Bakenecker;Fabrice Katzberg;Huy Phan;T. Buzug;A. Mertins
Optimized Compression of MPI System Matrices Using a Symmetry-Preserving Secondary Orthogonal Transform
使用保对称二次正交变换优化 MPI 系统矩阵压缩
- DOI:10.18416/ijmpi.2016.1607002
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Ahlborg;Medimagh;Mertins
- 通讯作者:Mertins
Compressed Sensing of the System Matrix and Sparse Reconstruction of the Particle Concentration in Magnetic Particle Imaging
磁粒子成像系统矩阵的压缩感知与粒子浓度的稀疏重建
- DOI:10.1109/tmag.2014.2326432
- 发表时间:2015
- 期刊:
- 影响因子:2.1
- 作者:von Gladiß;Ahlborg
- 通讯作者:Ahlborg
Actuation and visualization of a magnetically coated swimmer with magnetic particle imaging
- DOI:10.1016/j.jmmm.2018.10.056
- 发表时间:2019-03-01
- 期刊:
- 影响因子:2.7
- 作者:Bakenecker, Anna C.;von Gladiss, Anselm;Buzug, Thorsten M.
- 通讯作者:Buzug, Thorsten M.
Asymmetric Scanner Design for Interventional Scenarios in Magnetic Particle Imaging
- DOI:10.1109/tmag.2014.2337931
- 发表时间:2015-02-01
- 期刊:
- 影响因子:2.1
- 作者:Kaethner, Christian;Ahlborg, Mandy;Buzug, Thorsten M.
- 通讯作者:Buzug, Thorsten M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Thorsten Buzug其他文献
Professor Dr. Thorsten Buzug的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Thorsten Buzug', 18)}}的其他基金
Development of a novel MPI scanner based on a field free line
基于无场线的新型 MPI 扫描仪的开发
- 批准号:
270315379 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Axially unlimited elongation of a volume-covering sampling trajectory for a novel 3D MPI scanner with cylindrical field-of-view
具有圆柱形视场的新型 3D MPI 扫描仪的体积覆盖采样轨迹的轴向无限伸长
- 批准号:
264145401 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Data-Driven Algorithms for Data Acquisition
用于数据采集的数据驱动算法
- 批准号:
EP/Y037200/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
- 批准号:
486956 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Research Infrastructure: MRI: Track 2 Acquisition of Data Observation and Computation Collaboratory (DOCC)
研究基础设施:MRI:数据观察和计算合作实验室 (DOCC) 的轨道 2 采集
- 批准号:
2320261 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Equipment: MRI: Track 2 Acquisition of a HPC Cluster for Fostering Interdisciplinary Collaboration on AI-driven and Data-intensive Research and Education in West Tennessee
设备: MRI:第二轨道收购 HPC 集群,以促进田纳西州西部人工智能驱动和数据密集型研究和教育的跨学科合作
- 批准号:
2318210 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Preparing STEM Technicians for Bioscience Data Acquisition and Analysis
培养 STEM 技术人员进行生物科学数据采集和分析
- 批准号:
2301294 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
256-channel Digital Neural Signal Processor Real-Time Data Acquisition System
256通道数字神经信号处理器实时数据采集系统
- 批准号:
10630883 - 财政年份:2023
- 资助金额:
-- - 项目类别:
TeleLine: Plug-n-Play Inline Respiratory Remote Data Acquisition System
TeleLine:即插即用内联呼吸远程数据采集系统
- 批准号:
10603124 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Radio frequency and data acquisition toolkit for physics experiments
用于物理实验的射频和数据采集工具包
- 批准号:
2782194 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
BBSRC-NSF/BIO. Globally harmonized re-analysis of Data Independent Acquisition (DIA) proteomics datasets enables the creation of new resources
BBSRC-NSF/BIO。
- 批准号:
BB/X002020/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
BBSRC-NSF/BIO. Globally harmonized re-analysis of Data Independent Acquisition (DIA) proteomics datasets enables the creation of new resources
BBSRC-NSF/BIO。
- 批准号:
BB/X001911/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




