CAREER: Bio-inspired Multi-joint Design and Control for Efficient and Lightweight Wearable Robots
职业:高效、轻型可穿戴机器人的仿生多关节设计和控制
基本信息
- 批准号:2046287
- 负责人:
- 金额:$ 58.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) award will promote the progress of science and advance the national health and prosperity by providing new knowledge related to wearable robotics. Wearable robots, such as powered exoskeletons, promise to improve our productivity, health, and independence by augmenting, preserving, and restoring our ability to move. However, existing powered exoskeletons are heavy and inefficient, which largely prevents them from being used in real life. Existing powered exoskeletons apply assistance to each wearer's joint separately, which requires many actuators and large batteries. In contrast, the powered exoskeletons created in this project will use bio-inspired actuation systems that concurrently assist multiple wearer’s joints, much like human muscles. Because one exoskeleton actuator assists multiple wearer’s joints, fewer actuators will be needed. Because energy is transferred between joints instead of being dissipated, smaller and lighter actuators and batteries will be needed. The multidisciplinary research team of roboticists, movement scientists, and clinicians will work closely with individuals with disabilities, broadening the participation of underrepresented groups in research and positively impact engineering education.Ambulation requires considerable energy to accelerate and decelerate the limb segments and to dynamically support the body against gravity. Human ambulation is highly efficient and stable because of the passive dynamics of the leg and the elastic properties of the muscles, and also because many muscles span multiple joints, actively transferring energy between joints. In contrast, existing powered exoskeletons are designed and controlled considering each actuated joint as a separate unit, independent from the others, even when multiple joints are actuated. This approach disrupts the natural dynamics of ambulation, resulting in less efficient and less stable gait. The goal of this project is to address this fundamental gap by developing energy-conserving mechanisms and control algorithms inspired by human ambulation. We will optimize the energy exchange across multiple joints for the design and control of powered exoskeletons by studying how humans adapt to the assistance concurrently provided by a powered exoskeleton to multiple leg joints, on different anatomical planes, or during different ambulation activities. We will then design powered exoskeletons that can allow for energy transfer between different joints, conserving energy within the system, while improving metabolic cost, muscle effort, and stability of the wearer.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师早期职业发展(CAREER)奖将通过提供与可穿戴机器人相关的新知识来促进科学的进步,并促进国家的健康和繁荣。可穿戴机器人,如动力外骨骼,通过增强、保持和恢复我们的移动能力,有望提高我们的生产力、健康和独立性。然而,现有的动力外骨骼笨重且效率低下,这在很大程度上阻碍了它们在真实的生活中的使用。现有的动力外骨骼分别向每个穿戴者的关节施加辅助,这需要许多致动器和大型电池。相比之下,在这个项目中创建的动力外骨骼将使用生物启发的驱动系统,同时帮助多个穿戴者的关节,就像人类肌肉一样。因为一个外骨骼致动器辅助多个穿戴者的关节,所以将需要较少的致动器。由于能量在关节之间传递而不是耗散,因此需要更小更轻的致动器和电池。由机器人专家、运动科学家和临床医生组成的多学科研究团队将与残疾人密切合作,扩大代表性不足的群体在研究中的参与,并对工程教育产生积极影响。Ampendance需要相当大的能量来加速和减速肢体部分,并动态支撑身体对抗重力。人体假肢是高效和稳定的,因为腿的被动动力学和肌肉的弹性特性,也因为许多肌肉跨越多个关节,在关节之间主动传递能量。相比之下,现有的动力外骨骼被设计和控制为将每个致动关节视为独立于其他关节的单独单元,即使当多个关节被致动时也是如此。这种方法破坏了Ambassador的自然动力学,导致效率较低且不稳定的步态。该项目的目标是通过开发节能机制和受人类活动启发的控制算法来解决这一根本性差距。我们将通过研究人类如何适应由动力外骨骼同时提供给多个腿部关节的辅助,在不同的解剖平面上,或在不同的运动活动期间,来优化多个关节之间的能量交换,以用于动力外骨骼的设计和控制。然后,我们将设计动力外骨骼,它可以允许不同关节之间的能量转移,节省系统内的能量,同时改善代谢成本,肌肉的努力,和穿着者的稳定性。该项目得到了跨董事会机器人基础研究计划的支持,由工程局(ENG)和计算机与信息科学与工程局(CISE)共同管理和资助该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assistive Powered Hip Exoskeleton Improves Self-Selected Walking Speed in One Individual with Hemiparesis: A Case Study
辅助动力髋部外骨骼提高偏瘫患者的自主行走速度:案例研究
- DOI:10.1109/icorr55369.2022.9896568
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Archangeli, Dante;Ishmael, Marshall K.;Lenzi, Tommaso
- 通讯作者:Lenzi, Tommaso
Series-elastic actuator with two degree-of-freedom PID control improves torque control in a powered knee exoskeleton
具有两个自由度 PID 控制的串联弹性执行器改善了动力膝外骨骼的扭矩控制
- DOI:10.1017/wtc.2023.20
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Sarkisian, Sergei V.;Gabert, Lukas;Lenzi, Tommaso
- 通讯作者:Lenzi, Tommaso
Powered Hip Exoskeleton Reduces Residual Hip Effort Without Affecting Kinematics and Balance in Individuals With Above-Knee Amputations During Walking
- DOI:10.1109/tbme.2022.3211842
- 发表时间:2023-04-01
- 期刊:
- 影响因子:4.6
- 作者:Ishmael, Marshall K. K.;Gunnell, Andrew;Lenzi, Tommaso
- 通讯作者:Lenzi, Tommaso
A Powered Hip Exoskeleton With High Torque Density for Walking, Running, and Stair Ascent
具有高扭矩密度的动力髋部外骨骼,适用于步行、跑步和爬楼梯
- DOI:10.1109/tmech.2022.3159506
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ishmael, Marshall K.;Archangeli, Dante;Lenzi, Tommaso
- 通讯作者:Lenzi, Tommaso
Powered hip exoskeleton improves walking economy in individuals with above-knee amputation
- DOI:10.1038/s41591-021-01515-2
- 发表时间:2021-10-11
- 期刊:
- 影响因子:82.9
- 作者:Ishmael, Marshall K.;Archangeli, Dante;Lenzi, Tommaso
- 通讯作者:Lenzi, Tommaso
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tommaso Lenzi其他文献
The synergistic effect of exposure to alcohol, tobacco smoke and other risk factors for age-related macular degeneration
- DOI:
10.1007/s10654-013-9798-7 - 发表时间:
2013-03-31 - 期刊:
- 影响因子:5.900
- 作者:
Giuseppe La Torre;Elena Pacella;Rosella Saulle;Guglielmo Giraldi;Fernanda Pacella;Tommaso Lenzi;Olga Mastrangelo;Federica Mirra;Gianluca Aloe;Paolo Turchetti;Chiara Brillante;Giulio De Paolis;Antonio Boccia;Rosalia Giustolisi - 通讯作者:
Rosalia Giustolisi
A Unified Controller for Natural Ambulation on Stairs and Level Ground with a Powered Robotic Knee Prosthesis
使用动力机器人膝关节假体在楼梯和水平地面上自然行走的统一控制器
- DOI:
10.1109/iros55552.2023.10341691 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Marissa Cowan;Suzi Creveling;Liam M. Sullivan;Lukas Gabert;Tommaso Lenzi - 通讯作者:
Tommaso Lenzi
Open dataset of kinetics, kinematics, and electromyography of above-knee amputees during stand-up and sit-down
膝关节以上截肢者站起和坐下过程中动力学、运动学和肌电图的开放数据集
- DOI:
10.1038/s41597-025-04695-5 - 发表时间:
2025-03-12 - 期刊:
- 影响因子:6.900
- 作者:
Grace R. Hunt;Lukas Gabert;Colby Hansen;K. Bo Foreman;Tommaso Lenzi - 通讯作者:
Tommaso Lenzi
Tommaso Lenzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tommaso Lenzi', 18)}}的其他基金
NRI: INT: COLLAB: Muscle Ultrasound Sensing for Intuitive Control of Robotic Leg Prostheses
NRI:INT:COLLAB:用于机器人假肢直观控制的肌肉超声传感
- 批准号:
1925371 - 财政年份:2019
- 资助金额:
$ 58.43万 - 项目类别:
Standard Grant
相似国自然基金
骨胶原(Bio-Oss Collagen)联合龈下喷砂+骨皮质切开术治疗
根分叉病变的临床疗效研究
- 批准号:2024JJ9542
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于通用型 M13-Bio 噬菌体信号放大的动态
光散射免疫传感检测平台的建立及机制研究
- 批准号:Q24C200014
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能双栅调控InSe Bio-FET可控构筑与原位细胞传感机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
2D/2D BiO2-x/graphyne异质结光热活化过硫酸盐降解水体中抗生素的机理研究
- 批准号:LY23E080003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
过渡金属掺杂与原位外延生长Z型异质结协同增强BiO2-x的宽光谱光催化活化分子氧去除水中难降解微塑料的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:
Z型异质结“(金属氧化物MOx@薄层碳TC)/BiO1-xCl”的可控构筑及其光催化性能的研究
- 批准号:22005126
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
BIO促进脂肪来源干细胞修复急性心肌梗死的作用及机制
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
6-BIO 抗肝脏衰老的作用与作用机制研究
- 批准号:19ZR1438800
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MOFs热解构建薄层碳包覆的BiO1-xX基Z型异质结及其光催化水氧化苯制苯酚反应的研究
- 批准号:
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
可回收MFe2O4/二维 (BiO)2CO3 复合纳米矿物材料光降解再生水中顽固型有机物机理
- 批准号:41877481
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 58.43万 - 项目类别:
Continuing Grant
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
- 批准号:
2338171 - 财政年份:2024
- 资助金额:
$ 58.43万 - 项目类别:
Continuing Grant
CAREER: Geometric and Electronic Contributions to Bio-inspired Reactivities of Heme-superoxide Intermediates
职业:几何和电子对血红素超氧化物中间体的仿生反应活性的贡献
- 批准号:
2422277 - 财政年份:2024
- 资助金额:
$ 58.43万 - 项目类别:
Continuing Grant
CAREER: Toward energy-efficient bio-inspired magnonic processing with nanomagnetic arrays
职业:利用纳米磁性阵列实现节能的仿生磁力处理
- 批准号:
2339475 - 财政年份:2024
- 资助金额:
$ 58.43万 - 项目类别:
Continuing Grant
CAREER: Tough Architected Concrete Materials: Bio-inspired Design, Manufacturing, and Mechanics
职业:坚韧的建筑混凝土材料:仿生设计、制造和力学
- 批准号:
2238992 - 财政年份:2023
- 资助金额:
$ 58.43万 - 项目类别:
Continuing Grant
CAREER: Bio-inspired Nonequilibrium Design Principles of Molecular Information Machines
职业:分子信息机的仿生非平衡设计原理
- 批准号:
2145256 - 财政年份:2022
- 资助金额:
$ 58.43万 - 项目类别:
Continuing Grant
CAREER: Achieving Resilience in Brittle Materials Through Bio-inspired Nested Cylindrical Structures
职业:通过仿生嵌套圆柱形结构实现脆性材料的弹性
- 批准号:
2146480 - 财政年份:2022
- 资助金额:
$ 58.43万 - 项目类别:
Standard Grant
CAREER: Bio-inspired Manufacturing of High Strength, High Toughness Metal-Graphene Composites
职业:高强度、高韧性金属-石墨烯复合材料的仿生制造
- 批准号:
2309995 - 财政年份:2022
- 资助金额:
$ 58.43万 - 项目类别:
Standard Grant
CAREER: Gas-regulated Mechanochemical Activation for Bio-inspired Responses in Polymer Networks
职业:聚合物网络中仿生响应的气体调节机械化学激活
- 批准号:
2143146 - 财政年份:2022
- 资助金额:
$ 58.43万 - 项目类别:
Continuing Grant
CAREER: Geometric and Electronic Contributions to Bio-inspired Reactivities of Heme-superoxide Intermediates
职业:几何和电子对血红素超氧化物中间体的仿生反应活性的贡献
- 批准号:
2045005 - 财政年份:2021
- 资助金额:
$ 58.43万 - 项目类别:
Continuing Grant