CAREER: Towards Conversational Recommendation Systems: Explainability, Fairness, and Human-in-the-Loop Learning

职业:走向对话式推荐系统:可解释性、公平性和人在环学习

基本信息

  • 批准号:
    2046457
  • 负责人:
  • 金额:
    $ 54.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Recent advances in Artificial Intelligence (AI) have accumulated a rich toolbox of models for information retrieval, natural language processing and personalized recommendation. By optimizing over benchmark datasets, many of the models were developed with an algorithmic consideration instead of putting human as the central consideration. However, the ultimate goal of AI is to serve humans, collaborate with humans, and, ultimately, benefit humans. As a result, algorithmic approaches to AI must put humans in the loop for model design, implementation and validation. This project focuses on conversational AI, a promising approach towards putting humans in the loop, which enables direct conversation between human and AI for model learning. In particular, the project explores conversational recommender systems to help users in information seeking and decision making. It will develop explainable and fairness-aware algorithms for conversational recommendation. Presentation of the work and demos will help to engage with wider audiences that are interested in computational research. By integrating transparency and fairness principles into computer science courses on areas such as Information Retrieval, Data Mining and Artificial Intelligence, results from the project will educate students to understand how AI can be not only useful but also socially responsible.This project will develop a general framework for conversational recommendation that bridges natural language understanding and dialog state management. With the framework, the project will explore three directions. The first direction aims at developing explainable conversation strategies based on human-machine collaborative reasoning, which brings cognitive ease to users and helps to build trust between human and AI. The second direction explores fairness-aware conversation strategies based on short-term and long-term fairness learning, which helps to achieve fair recommendation experiences between advantages and disadvantaged users. The third direction aims at developing a learning to evaluate protocol for conversational recommendation, which unifies the advantages of online crowd-sourcing and offline model learning for evaluation. The project will also develop a prototype conversational recommendation platform as a class project to support the education of responsible AI. The project will result in the dissemination of shared data and evaluation platforms to the Information Retrieval, Data Mining, Recommender System, and broader AI communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能 (AI) 的最新进展积累了丰富的信息检索、自然语言处理和个性化推荐模型工具箱。通过对基准数据集进行优化,许多模型的开发都考虑了算法,而不是把人类作为中心考虑因素。但人工智能的最终目的是服务人类、与人类合作、最终造福人类。因此,人工智能的算法方法必须让人类参与模型设计、实施和验证的循环。该项目专注于对话式人工智能,这是一种让人类参与循环的有前途的方法,它可以实现人类和人工智能之间的直接对话以进行模型学习。特别是,该项目探索会话推荐系统来帮助用户进行信息搜索和决策。它将开发可解释且具有公平意识的对话推荐算法。作品和演示的展示将有助于吸引对计算研究感兴趣的更广泛的受众。通过将透明度和公平原则融入信息检索、数据挖掘和人工智能等领域的计算机科学课程中,该项目的结果将教育学生了解人工智能如何不仅有用,而且具有社会责任感。该项目将开发一个对话推荐的通用框架,连接自然语言理解和对话状态管理。在此框架下,项目将探索三个方向。第一个方向旨在开发基于人机协作推理的可解释对话策略,为用户带来认知便利,并有助于建立人与人工智能之间的信任。第二个方向探索基于短期和长期公平学习的公平感知对话策略,这有助于实现优势用户和弱势用户之间的公平推荐体验。第三个方向旨在开发一种会话推荐的学习评估协议,它结合了在线众包和离线模型学习评估的优点。该项目还将开发一个原型对话推荐平台作为课堂项目,以支持负责任的人工智能教育。该项目将导致共享数据和评估平台向信息检索、数据挖掘、推荐系统和更广泛的人工智能社区的传播。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)
System 1 + System 2 = Better World: Neural-Symbolic Chain of Logic Reasoning
  • DOI:
    10.18653/v1/2022.findings-emnlp.42
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenyue Hua;Yongfeng Zhang
  • 通讯作者:
    Wenyue Hua;Yongfeng Zhang
User-Controllable Recommendation via Counterfactual Retrospective and Prospective Explanations
  • DOI:
    10.48550/arxiv.2308.00894
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juntao Tan;Yingqiang Ge;Yangchun Zhu;Yinglong Xia;Jiebo Luo;Jianchao Ji;Yongfeng Zhang
  • 通讯作者:
    Juntao Tan;Yingqiang Ge;Yangchun Zhu;Yinglong Xia;Jiebo Luo;Jianchao Ji;Yongfeng Zhang
AutoLossGen: Automatic Loss Function Generation for Recommender Systems
Graph Collaborative Reasoning
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongfeng Zhang其他文献

COMPREHENSIVE EVALUATION OF DIESEL ENGINE PERFORMANCE FOR ARMORED VEHICLES
Piston sensing via a dispersed fringe sensor with a merit-function-based active scanning algorithm at low light levels
通过分散条纹传感器进行活塞感应,并在低光照水平下采用基于评价函数的主动扫描算法
  • DOI:
    10.3788/col201917.121101
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Yongfeng Zhang;Hao Xian
  • 通讯作者:
    Hao Xian
Oxygen-enriched Combustion Characteristics of Solid Fuel–the Lignite
固体燃料——褐煤的富氧燃烧特性
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiangyun Chen;Yongfeng Zhang;Qiancheng Zhang;Quan Zhou
  • 通讯作者:
    Quan Zhou
AttackEval: How to Evaluate the Effectiveness of Jailbreak Attacking on Large Language Models
AttackEval:如何评估大型语言模型越狱攻击的有效性
  • DOI:
    10.48550/arxiv.2401.09002
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dong Shu;Mingyu Jin;Suiyuan Zhu;Beichen Wang;Zihao Zhou;Chong Zhang;Yongfeng Zhang
  • 通讯作者:
    Yongfeng Zhang
Give me Something Unknown: Incorporate Exploration Preference in Cognition into Recommender System
给我一些未知的东西:将认知中的探索偏好纳入推荐系统

Yongfeng Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongfeng Zhang', 18)}}的其他基金

III: Small: Collaborative Research: Scrutable and Explainable Information Retrieval with Model Intrinsic and Agnostic Approaches
III:小:协作研究:使用模型内在和不可知的方法进行可查和可解释的信息检索
  • 批准号:
    2007907
  • 财政年份:
    2020
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
III: Small: Towards Explainable Recommendation Systems
III:小:迈向可解释的推荐系统
  • 批准号:
    1910154
  • 财政年份:
    2019
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
  • 批准号:
    2327411
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349935
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349934
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
CAREER: Towards a comprehensive model of seismicity throughout the seismic cycle
职业:建立整个地震周期地震活动的综合模型
  • 批准号:
    2339556
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
Sexual offence interviewing: Towards victim-survivor well-being and justice
性犯罪面谈:为了受害者-幸存者的福祉和正义
  • 批准号:
    DE240100109
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了