CAREER: Large-Scale Markov Chain Monte Carlo for Reliable Machine Learning
职业:用于可靠机器学习的大规模马尔可夫链蒙特卡罗
基本信息
- 批准号:2046760
- 负责人:
- 金额:$ 42.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A core capability of intelligence is reasoning about hidden information. Many artificial intelligence (AI) approaches reason about hidden information by constructing a statistical model and then running a statistical inference algorithm to learn hidden information from observed data. But many inference algorithms take a very long time to run when they are learning from a very large amount of data; or, worse, they might run quickly but give the wrong answer. This is problematic as the world trends towards large-scale AI. This project will build new general statistical inference algorithms that will still run efficiently, even on very large datasets and on very complicated models, while having provable reliability guarantees. This will promote the progress of science by making scalable statistical inference reliable. The project will also further education in AI through the development of open-source course resources that give students hands-on experience with how scalability and reliability interact in ML systems.The project will focus on Markov chain Monte Carlo (MCMC) methods, which is a class of statistical inference algorithm that work by simulating a random process that converges to a desired statistical model. Markov chain Monte Carlo methods can give very accurate statistical estimates, but can scale poorly to large datasets and complicated models. This project will fix this by building new algorithms that address scaling to large data and large models with data-subsampling and asynchronous parallelism, respectively. Throughout, it will focus on proving theoretical guarantees that expose the trade-off between scalability and reliability for MCMC.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
智能的一个核心能力是对隐藏信息的推理。许多人工智能(AI)方法通过构建统计模型,然后运行统计推理算法来从观察到的数据中学习隐藏信息,从而对隐藏信息进行推理。但是,当从大量数据中学习时,许多推理算法需要很长时间才能运行;或者,更糟糕的是,它们可能运行得很快,但给出了错误的答案。随着世界向大规模AI发展,这是一个问题。该项目将构建新的通用统计推断算法,即使在非常大的数据集和非常复杂的模型上,这些算法仍然可以有效地运行,同时具有可证明的可靠性保证。这将通过使可扩展的统计推断可靠来促进科学的进步。该项目还将通过开发开源课程资源,让学生亲身体验ML系统中的可扩展性和可靠性如何相互作用,从而进一步教育AI。该项目将重点关注马尔可夫链蒙特卡罗(MCMC)方法,这是一类统计推理算法,通过模拟收敛到所需统计模型的随机过程来工作。马尔可夫链蒙特卡罗方法可以给出非常准确的统计估计,但对大型数据集和复杂模型的扩展性很差。这个项目将通过构建新的算法来解决这个问题,这些算法分别通过数据子采样和异步并行来解决大数据和大模型的扩展问题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A General Analysis of Example-Selection for Stochastic Gradient Descent
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yucheng Lu;S. Meng;Christopher De Sa
- 通讯作者:Yucheng Lu;S. Meng;Christopher De Sa
Low-Precision Stochastic Gradient Langevin Dynamics
- DOI:10.48550/arxiv.2206.09909
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Ruqi Zhang;A. Wilson;Chris De Sa
- 通讯作者:Ruqi Zhang;A. Wilson;Chris De Sa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher De Sa其他文献
‘Tecnologica cosa’: Modeling Storyteller Personalities in Boccaccio’s ‘Decameron’
“Tecnologica cosa”:塑造薄伽丘《十日谈》中讲故事者的个性
- DOI:
10.18653/v1/2021.latechclfl-1.17 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
A. Feder Cooper;Maria Antoniak;Christopher De Sa;Marilyn Migiel;David M. Mimno - 通讯作者:
David M. Mimno
GraB: Finding Provably Better Data Permutations than Random Reshuffling
GraB:寻找可证明比随机重新洗牌更好的数据排列
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yucheng Lu;Wentao Guo;Christopher De Sa - 通讯作者:
Christopher De Sa
OverQ: Opportunistic Outlier Quantization for Neural Network Accelerators
OverQ:神经网络加速器的机会离群值量化
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ritchie Zhao;Jordan Dotzel;Zhanqiu Hu;Preslav Ivanov;Christopher De Sa;Zhiru Zhang - 通讯作者:
Zhiru Zhang
Poisson-Minibatching for Gibbs Sampling with Convergence Rate Guarantees
具有收敛率保证的吉布斯采样的泊松小批量处理
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ruqi Zhang;Christopher De Sa - 通讯作者:
Christopher De Sa
Cloud-Hosted Intelligence for Real-time IoT Applications
用于实时物联网应用的云托管智能
- DOI:
10.1145/3352020.3352023 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
K. Birman;B. Hariharan;Christopher De Sa - 通讯作者:
Christopher De Sa
Christopher De Sa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher De Sa', 18)}}的其他基金
RI: Small: Reliable Machine Learning in Hyperbolic Spaces
RI:小型:双曲空间中的可靠机器学习
- 批准号:
2008102 - 财政年份:2020
- 资助金额:
$ 42.21万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 42.21万 - 项目类别:
Continuing Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 42.21万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 42.21万 - 项目类别:
Continuing Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 42.21万 - 项目类别:
Standard Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 42.21万 - 项目类别:
Continuing Grant
CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
- 批准号:
2339904 - 财政年份:2024
- 资助金额:
$ 42.21万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 42.21万 - 项目类别:
Continuing Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
- 批准号:
2239410 - 财政年份:2023
- 资助金额:
$ 42.21万 - 项目类别:
Continuing Grant
CAREER: Large-Scale Exploration and Interpretation of Consumer-Oriented Legal Documents
职业:面向消费者的法律文件的大规模探索和解读
- 批准号:
2237574 - 财政年份:2023
- 资助金额:
$ 42.21万 - 项目类别:
Continuing Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
- 批准号:
2238096 - 财政年份:2023
- 资助金额:
$ 42.21万 - 项目类别:
Continuing Grant