CAREER: Nucleic Acid-Peptide-Mineral Hybrid Assemblies and Nano-Devices

职业:核酸-肽-矿物质混合组件和纳米器件

基本信息

  • 批准号:
    2046835
  • 负责人:
  • 金额:
    $ 71.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-15 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYLife at various scales can be viewed as a dynamic self-assembling system. Living organisms have developed their unique strategies to build soft and hard tissues and the resulting hybrid materials have excellent properties that remain far beyond those of their artificial counterparts. To engineer nature-inspired self-assembled molecular systems and functional materials, which can communicate with cells and regulate biological events, is one of the grand goals that is highly relevant to scientific areas ranging from synthetic biology, nanotechnology, regenerative medicine, to materials science. This project aims to develop self-assembling Nucleic Acid-Peptide-Mineral (NAPM) hybrid molecular tiles as building blocks to create robust, programmable, smart, and functional biomaterials and nanodevices. The unique structural programmability of DNA will be integrated with the advantageous mechanical properties and functionality of minerals, peptides, and RNA to diversify and enhance the chemical and physical functionality of DNA nanostructures. This new platform will expand the programmable assembly in DNA nanotechnology from the nanometer scale to microns, furnish knowledge on the self-assembly of novel hybrid tiles, and lead to the discovery of new functionalities associated with these hybrid systems. In addition, this project integrates research with graduate and undergraduate education and introduces innovative programs for high schools, K-12 students, and community-wide outreach.TECHNICAL SUMMARYThe overarching goal of this project is to develop a hybrid molecular tile system employing minerals and peptides that are integrated into programmable DNA nanostructures to generate new self-assembling hybrid materials. The main scientific challenges to address are: (1) how to develop a general method to rigidify DNA nanostructures while maintaining the programmability of DNA, (2) how to create the surface preference for controllable precise deposition of different types of minerals, (3) what are the self-assembly behaviors of these new hybrid tiles and how to guide their assembly to create novel structures at micron scales, and (4) how to achieve dynamic responsive reconfiguration in this new system. In this project, these challenges will be tackled by developing structurally strengthening deposition methods of minerals employing regulating peptides and RNA molecules to produce NAPM hybrid tiles; developing geometric matching and molecular programming rules for the hybrid tiles to direct their self-assembly; and engineering novel reconfiguration mechanisms by integrating switchable nucleic acid structures to reversibly change the size, shape, and surface chemistry of the hybrid materials responding to external stimuli. This project will finally create hybrid materials that inherit the programmability of DNA and RNA while displaying enhanced mechanical properties. It will also develop a toolkit for integrating the physicochemical and mechanical properties of inorganic materials with biological materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
各种尺度的生命可以被看作是一个动态的自我组装系统。生物体已经发展出了独特的策略来构建软硬组织,由此产生的混合材料具有远远超过其人工对应物的优异性能。设计自然启发的自组装分子系统和功能材料,可以与细胞通信并调节生物事件,是与合成生物学,纳米技术,再生医学和材料科学等科学领域高度相关的宏伟目标之一。该项目旨在开发自组装核酸-肽-矿物质(NAPM)混合分子瓦作为构建模块,以创建强大的,可编程的,智能的和功能性的生物材料和纳米器件。DNA独特的结构可编程性将与矿物质,肽和RNA的有利机械性能和功能相结合,以多样化和增强DNA纳米结构的化学和物理功能。这个新平台将DNA纳米技术中的可编程组装从纳米级扩展到微米级,提供关于新型混合瓷砖自组装的知识,并导致发现与这些混合系统相关的新功能。此外,该项目将研究与研究生和本科生教育相结合,并为高中,K-12学生和社区范围内的推广引入创新计划。技术总结该项目的总体目标是开发一种混合分子瓦系统,采用矿物质和肽,将其整合到可编程DNA纳米结构中,以产生新的自组装混合材料。需要解决的主要科学挑战是:(1)如何开发一种通用方法来刚性化DNA纳米结构,同时保持DNA的可编程性,(2)如何创建用于不同类型矿物的可控精确沉积的表面偏好,(3)这些新的混合瓦片的自组装行为是什么,以及如何引导它们的组装以在微米尺度上创建新颖的结构,(4)如何在新系统中实现动态响应重构。在该项目中,这些挑战将通过开发利用调节肽和RNA分子的矿物结构强化沉积方法来解决,以产生NAPM混合瓦片;开发混合瓦片的几何匹配和分子编程规则以指导其自组装;以及通过整合可转换的核酸结构来可逆地改变核酸的大小,形状,和响应外部刺激的杂化材料的表面化学。该项目最终将创建继承DNA和RNA可编程性的混合材料,同时显示增强的机械性能。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications
核酸副贫血结构:生物医学和生物纳米技术应用中功能纳米材料的有前景的构建模块
  • DOI:
    10.1039/d2tb00605g
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Lee, Jung Yeon;Yang, Qi;Chang, Xu;Wisniewski, Henry;Olivera, Tiffany R.;Saji, Minu;Kim, Suchan;Perumal, Devanathan;Zhang, Fei
  • 通讯作者:
    Zhang, Fei
Self-assembled Nucleic Acid Nanostructures for Biomedical Applications
用于生物医学应用的自组装核酸纳米结构
  • DOI:
    10.2174/1568026622666220321140729
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Chang, Xu;Yang, Qi;Lee, Jungyeon;Zhang, Fei
  • 通讯作者:
    Zhang, Fei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fei Zhang其他文献

Facile and Controllable Modification of 3D In2O3 Microflowers with In2S3 Nanoflakes for Efficient Photocatalytic Degradation of Gaseous ortho-Dichlorobenzene
用 In2S3 纳米片轻松可控地修饰 3D In2O3 微花,以实现气态邻二氯苯的高效光催化降解
  • DOI:
    10.1021/acs.jpcc.6b03618
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Fei Zhang;Xinyong Li;Qidong Zhao;Aicheng Chen
  • 通讯作者:
    Aicheng Chen
Perianesthesia Care of the Oncologic Patients Undergoing Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy: A Retrospective Study.
接受热腹腔化疗肿瘤细胞减灭术的肿瘤患者的围麻醉护理:一项回顾性研究。
Chemotactic responses of the root-knot nematode Meloidogyne incognita to Streptomyces plicatus
根结线虫南方根结线虫对褶皱链霉菌的趋化反应
  • DOI:
    10.1093/femsle/fnz234
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Pinyi Wang;Yan Sun;Liangliang Yang;Yan Hu;Jiefang Li;Jinxing Wang;Fei Zhang;Yajun Liu
  • 通讯作者:
    Yajun Liu
Pressure-induced spin crossover in a Fe78Si9B13 metallic glass
Fe78Si9B13 金属玻璃中压力诱导的自旋交叉
  • DOI:
    10.1063/5.0050830
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Tao Liang;Fei Zhang;Xin Zhang;Xiehang Chen;Songyi Chen;Hongbo Lou;Zhidan Zeng;Dazhe Xu;Ke Yang;Yuming Xiao;Paul Chow;Baolong Shen;Qiaoshi Zeng
  • 通讯作者:
    Qiaoshi Zeng
Determination and characterization of two degradant impurities in bendamustine hydrochloride drug product.
盐酸苯达莫司汀药品中两种降解杂质的测定和表征。
  • DOI:
    10.1093/chromsci/bmv070
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Wenhua Chen;Limin Zou;Fei Zhang;Xiangyang Xu;Liandi Zhang;Mingyi Liao;Xiaoqiang Li;L. Ding
  • 通讯作者:
    L. Ding

Fei Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fei Zhang', 18)}}的其他基金

Collaborative Research: FET: Small: Hierarchical Computational Framework for large scale RNA Design Pathway Discovery through Data and Experiments
合作研究:FET:小型:大规模 RNA 设计的分层计算框架通过数据和实验发现路径
  • 批准号:
    2007821
  • 财政年份:
    2020
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Zip Nucleic Acids引物对高度降解和低拷贝DNA检材的STR分型研究
  • 批准号:
    81072511
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
肽核酸(Peptide Nucleic Acid - PNA)电化学生物传感器的研究
  • 批准号:
    20703006
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Single-Molecule Study of Nucleic Acid Conformational Dynamics in Telomere
职业:端粒核酸构象动力学的单分子研究
  • 批准号:
    2338902
  • 财政年份:
    2024
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Continuing Grant
CAREER: Developing albumin-binding responsive polypeptides for nucleic acid delivery
职业:开发用于核酸递送的白蛋白结合响应性多肽
  • 批准号:
    2238812
  • 财政年份:
    2023
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Continuing Grant
CAREER: Enhanced Sampling Methods to Characterize Nucleic Acid Structure, Recognition Mechanisms and Function
职业:增强采样方法来表征核酸结构、识别机制和功能
  • 批准号:
    2235785
  • 财政年份:
    2022
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Standard Grant
CAREER: Multifunctional Peptide Nanocarriers for Delivery of Nucleic Acid Therapeutics
职业:用于传递核酸治疗的多功能肽纳米载体
  • 批准号:
    2046694
  • 财政年份:
    2021
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Continuing Grant
CAREER: Amplification-Coupled Solid-State Nanopore Digital Counting based a Versatile Platform for Point-of-Care Nucleic Acid Testing
职业:基于扩增耦合固态纳米孔数字计数的多功能平台,用于即时核酸检测
  • 批准号:
    2045169
  • 财政年份:
    2021
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Continuing Grant
CAREER: Programmable Peptide Nucleic Acid Molecules as Building-blocks for Complex Nanostructures
职业:可编程肽核酸分子作为复杂纳米结构的构建模块
  • 批准号:
    1944130
  • 财政年份:
    2020
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Standard Grant
CAREER: Programming Dynamic Growth and Reconfiguration in Nucleic Acid Nanomaterials
职业:核酸纳米材料动态生长和重构的编程
  • 批准号:
    1938194
  • 财政年份:
    2018
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Continuing Grant
CAREER: Programming Dynamic Growth and Reconfiguration in Nucleic Acid Nanomaterials
职业:核酸纳米材料动态生长和重构的编程
  • 批准号:
    1450747
  • 财政年份:
    2015
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Continuing Grant
CAREER: Nucleic acid circuitry for programming gene expression
职业:用于编程基因表达的核酸电路
  • 批准号:
    0954566
  • 财政年份:
    2010
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Standard Grant
CAREER: Nucleic Acid Engineering -- Integrating DNA into Biomaterial Research and Education
职业:核酸工程——将 DNA 融入生物材料研究和教育
  • 批准号:
    0547330
  • 财政年份:
    2006
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了