CAREER: Engineering laminin globular domains for accelerated cardiomyocyte proliferation: validation with a 3D bioprinted in vitro infarct model
职业:工程层粘连蛋白球状结构域加速心肌细胞增殖:用 3D 生物打印体外梗塞模型进行验证
基本信息
- 批准号:2047018
- 负责人:
- 金额:$ 44.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARY Finding optimal candidate and composition of engineered biomaterials is a challenging task with significant experimental cost and effort. To design effective, de novo biomaterials for cardiac repair, this CAREER award supported by the Biomaterials program aims to investigate a new biomaterials design strategy with data-driven approaches. The first objective is to create a large number of functionally relevant proteins with a computer algorithm, which are subject to systematic screening and selection. The second objective is to assess the selected pool of candidate proteins in a 3D model tissue including healthy and infarct conditions, where the model tissue is 3D bio-printed with another computer algorithm to minimize experimental trials and effort. With data-driven approaches, the PI seeks to attain 1) optimal, newly designed sequences of therapeutic proteins to accelerate the proliferation of cardiomyocytes and 2) optimal combinations of biomaterials and 3D bio-printing parameters to fabricate the model tissue with minimal experimental cost. In contrast to conventional approaches, the proposed data-driven approaches are adaptive to altered experimental conditions to reach the optimal target of biomaterial properties with enhanced experimental efficiency. The outcome of this CAREER award can potentially provide a novel platform of engineering therapeutic proteins and fabricating a model tissue with optimal cost and effort. Outreach activities and educational curricula are proposed to engage a range of students from middle school to undergraduate students to promote the exposure of biomaterials research to those students in highly agricultural and petrochemical engineering-oriented industrial settings. PART 2: TECHNICAL SUMMARY This CAREER award aims to engineer an extracellular matrix (ECM) protein to accelerate the proliferation of cardiomyocytes. Once over 4 million functionally relevant chimeras are created by a computer algorithm, screening and selection of those chimeras are experimentally expensive. Thus, the new approach proposed in the CAREER award is to utilize publicly available data to build machine learning models to screen and select those chimeras, which will be built upon a Gaussian Process to derive a posterior from a prior and observations. To avoid the overfitting problem of machine learning with the relatively smaller number of publicly available data, an additional machine learning model will be built with 1) protein folding metrics and 2) intracellular protein-based assay. To assess the performance of designer ECM proteins, an in vitro model of infarct (border zone) will be fabricated with 3D bio-printing. To recapitulate complex features of the border zone with minimal numbers of trials of 3D bio-printing, Bayesian Optimization will be applied to balance the exploration of the overall search space and the exploitation of the local search space to effectively achieve the optimal 3D bio-printing and biomaterial parameters. To unambiguously identify the proliferation of cardiomyocytes in the model border zone, genetically labeled adult cardiomyocytes will be 3D bio-printed in the model border zone to assess the increase of cardiomyocyte proliferation. This CAREER award also seeks to support STEM education in the areas of biomaterials research. The outreach program targets specifically local secondary school and undergraduate students to attract them into future workforce in biomaterials areas with priorities to female and underrepresented groups in STEM education.This project is jointly funded by the Biomaterials Program, Division of Materials Research, and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
寻找工程生物材料的最佳候选材料和组成是一项具有挑战性的任务,需要大量的实验成本和努力。为了设计有效的、全新的心脏修复生物材料,这项由生物材料计划支持的职业奖旨在研究一种新的生物材料设计策略,采用数据驱动的方法。第一个目标是通过计算机算法创建大量功能相关的蛋白质,这些蛋白质需要经过系统的筛选和选择。第二个目标是评估包括健康和梗死条件在内的3D模型组织中选定的候选蛋白质池,其中模型组织使用另一种计算机算法进行3D生物打印,以最大限度地减少实验试验和努力。通过数据驱动的方法,PI寻求获得1)最佳的,新设计的治疗蛋白序列,以加速心肌细胞的增殖;2)生物材料和3D生物打印参数的最佳组合,以最小的实验成本制造模型组织。与传统方法相比,所提出的数据驱动方法可以适应改变的实验条件,从而提高实验效率,达到生物材料性能的最佳目标。这项职业奖的结果可能为工程治疗蛋白和以最佳成本和努力制造模型组织提供一个新的平台。推广活动和教育课程的建议,以吸引中学生到大学生的范围,以促进生物材料研究的学生在高度农业和石化工程为导向的工业环境。本职业奖旨在设计一种细胞外基质(ECM)蛋白来加速心肌细胞的增殖。一旦通过计算机算法创造出超过400万个功能相关的嵌合体,对这些嵌合体的筛选和选择在实验上是昂贵的。因此,CAREER奖中提出的新方法是利用公开可用的数据来构建机器学习模型来筛选和选择这些嵌合体,这些嵌合体将建立在高斯过程的基础上,从先验和观察中获得后验。为了避免机器学习与相对较少数量的公开可用数据的过拟合问题,将使用1)蛋白质折叠度量和2)基于细胞内蛋白质的测定构建额外的机器学习模型。为了评估设计ECM蛋白的性能,将使用3D生物打印技术制作梗死(边界区)的体外模型。为了以最少的生物3D打印试验次数再现边界区域的复杂特征,将应用贝叶斯优化来平衡对整体搜索空间的探索和对局部搜索空间的利用,从而有效地获得最佳的生物3D打印和生物材料参数。为了明确识别模型边界区心肌细胞的增殖,基因标记的成人心肌细胞将在模型边界区进行3D生物打印,以评估心肌细胞增殖的增加。该职业奖还旨在支持生物材料研究领域的STEM教育。外展计划专门针对当地的中学生和本科生,以吸引他们进入生物材料领域的未来劳动力,优先考虑女性和STEM教育中代表性不足的群体。该项目由生物材料计划、材料研究部和促进竞争性研究的既定计划(EPSCoR)共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantification of solution-free red blood cell staining by sorption kinetics of Romanowsky stains to agarose gels
通过罗曼诺夫斯基染色剂对琼脂糖凝胶的吸附动力学对无溶液红细胞染色进行定量
- DOI:10.1039/d3ay01431b
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Bae, Chae Yun;Esmaeili, Hamid;Zamin, Syed A.;Seol, Min Jeong;Hwang, Eunmi;Beak, Suk Kyung;Song, Younghoon;Bharti, Bhuvnesh;Jung, Jangwook P.
- 通讯作者:Jung, Jangwook P.
Photo-Crosslinkable Polymeric Coatings Providing Chemically Versatile Reactive Surfaces on Various Substrates
- DOI:10.1021/acs.chemmater.3c00225
- 发表时间:2023-04-28
- 期刊:
- 影响因子:8.6
- 作者:Choi, Seungyeon;Yutzy, Lane D.;Kim, Myungwoong
- 通讯作者:Kim, Myungwoong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jangwook Jung其他文献
Jangwook Jung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Tissue Engineering Strategies to Revitalize Allografts
振兴同种异体移植物的组织工程策略
- 批准号:
10830613 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10837289 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Engineering a Vascularized Brain-Chip for Probing and Evaluating Mechanisms of Alzheimer’s Disease
设计用于探测和评估阿尔茨海默病机制的血管化脑芯片
- 批准号:
10428479 - 财政年份:2021
- 资助金额:
$ 44.25万 - 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10301622 - 财政年份:2021
- 资助金额:
$ 44.25万 - 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10468156 - 财政年份:2021
- 资助金额:
$ 44.25万 - 项目类别:
Mechanically active extracellular matrix fibers for tissue engineering applications
用于组织工程应用的机械活性细胞外基质纤维
- 批准号:
9910682 - 财政年份:2020
- 资助金额:
$ 44.25万 - 项目类别:
Mechanically active extracellular matrix fibers for tissue engineering applications
用于组织工程应用的机械活性细胞外基质纤维
- 批准号:
10357564 - 财政年份:2020
- 资助金额:
$ 44.25万 - 项目类别:
Engineering Microenvironments for the Nucleus Pulposus Cell
髓核细胞的工程微环境
- 批准号:
9228325 - 财政年份:2016
- 资助金额:
$ 44.25万 - 项目类别:
Neural Tissue Engineering Based on Combinatorial Effect of Multiple Guidance Cues
基于多种引导线索组合效应的神经组织工程
- 批准号:
8812022 - 财政年份:2014
- 资助金额:
$ 44.25万 - 项目类别:
Neural Tissue Engineering Based on Combinatorial Effect of Multiple Guidance Cues
基于多种引导线索组合效应的神经组织工程
- 批准号:
9271054 - 财政年份:2014
- 资助金额:
$ 44.25万 - 项目类别: