CAREER: Entanglement Engineering in Dissipation-Driven Quantum Systems

职业:耗散驱动量子系统中的纠缠工程

基本信息

  • 批准号:
    2047357
  • 负责人:
  • 金额:
    $ 55.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

Non-technical AbstractQuantum information processing (QIP) has rapidly emerged as a compelling research direction, driven by the prospect of quantum computers capable of performing calculations that are too large for any current or conceivable future classical (non-quantum) supercomputer. The Achilles heel of QIP has been dissipation, the friction that both generates heat and destroys the long-lived quantum correlations among quantum bits ("qubits") necessary for QIP, so far limiting quantum information systems in both size and complexity. Such correlations among qubits are called "entanglement," and a goal of this research is to produce any desired entangled state of qubits, which becomes the starting point for a quantum computation.A powerful approach to address this general problem is quantum reservoir engineering: the idea is to turn the tables on dissipation and use it as a resource for steering a quantum system, such that the dissipation-driven dynamics naturally relax the system to the state of interest. This CAREER project supports basic research into developing a novel reservoir engineering framework and leverages it for entanglement generation in noisy quantum systems. From a practical standpoint, this will help identify critical milestones for establishing reservoir engineering as a standard paradigm for scalable and robust entanglement generation, which has applications in all areas of quantum information science, including quantum computing, sensing and communication. In addition, the proposed research will enable fundamental advances in the physics of quantum systems coupled to a noisy environment by developing theoretical tools to rigorously explore the validity of standard dissipative models in the presence of noise that varies, and is correlated, in time.The education and training aspect in this project will assume a multi-pronged approach that will expose graduate and undergraduate students to a wide variety of analytical and computational techniques in quantum information and quantum optics. Aided and informed by close connections with experimental realizations of solid-state qubits, the aim will be to provide the trainees a holistic view of the polyglot field of QIP and address the strategic national need to create a "quantum-smart" workforce. The training aspect will be integrated with broad educational and outreach goals via new and continuing curriculum and course development initiatives, public talks, and promoting open access venues for communicating research results.Technical AbstractQuantum reservoir engineering is an attractive approach for correcting errors and realizing stable quantum coherences autonomously. The basic idea is to tailor the dissipative environment of the target systems so that this engineered dissipation relaxes the system to and sustains it in a desired target state. While versatile, existing schemes for dissipative state preparation rely exclusively on time-independent dissipative dynamics, which can leave the protocols susceptible to unwanted spurious dissipation. The PI's broad vision is that this project will enable a transformative new class of dissipative state preparation protocols with dramatically improved speed, fidelity and robustness to errors. To this end, the research will broadly focus on two directions: (i) study of dynamics driven by time-dependent dissipation, and (ii) study of dynamics driven by correlated dissipation. These theoretical studies will involve developing a comprehensive analytical and numerical framework with some of the first explorations of the validity of open quantum systems descriptions, especially in a context where non-trivial dissipation is a useful resource. For instance, the outcomes of this project will address fundamental questions pertaining to implications of adiabaticity and non-Markovianity for reservoir engineering and provide useful pointers for quantum error correction and error mitigation in the presence of correlated noise. This has transformative potential not only for the entanglement stabilization protocols envisioned here but also for any platform involving dynamic control of quantum systems. The PI maintains an active collaboration with experimental groups who will test the ideas on Josephson-junction-based superconducting platforms. Thus this research will complement and advance the rapidly growing experimental capabilities in quantum control of low-dimensional open systems in the near-term. Further, it will help strengthen interdisciplinary connections between disparate fields of quantum information/quantum optics, optimal control and strongly-interacting field theories, all of which focus on far-from-equilibrium quantum dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息处理(QIP)已经迅速成为一个引人注目的研究方向,这是由于量子计算机能够执行对任何当前或可想象的未来经典(非量子)超级计算机来说太大的计算。量子ip的致命弱点是耗散,这种摩擦既会产生热量,又会破坏量子ip所必需的量子比特(“量子比特”)之间的长期量子相关性,迄今为止,它在大小和复杂性上都限制了量子信息系统。量子比特之间的这种相关性被称为“纠缠”,这项研究的目标是产生任何期望的量子比特纠缠态,这成为量子计算的起点。解决这一普遍问题的一个强有力的方法是量子储层工程:其思想是扭转耗散的局面,并将其用作操纵量子系统的资源,这样耗散驱动的动力学就会自然地将系统放松到感兴趣的状态。这个CAREER项目支持基础研究,以开发一种新的油藏工程框架,并利用它来产生噪声量子系统中的纠缠。从实际的角度来看,这将有助于确定油藏工程的关键里程碑,将其作为可扩展和鲁棒纠缠生成的标准范例,应用于量子信息科学的所有领域,包括量子计算、传感和通信。此外,拟议的研究将通过开发理论工具来严格探索存在随时间变化和相关的噪声的标准耗散模型的有效性,从而使量子系统与噪声环境耦合的物理学取得根本性进展。该项目的教育和培训方面将采用多管齐下的方法,使研究生和本科生接触到量子信息和量子光学领域的各种分析和计算技术。借助与固态量子比特实验实现的密切联系,其目的是为受训者提供QIP多语言领域的整体视图,并解决国家创建“量子智能”劳动力的战略需求。培训方面将通过新的和持续的课程和课程开发倡议、公开演讲以及促进交流研究成果的开放场所,与广泛的教育和推广目标相结合。摘要量子水库工程是一种有吸引力的纠错和自主实现稳定量子相干的方法。基本思想是调整目标系统的耗散环境,使这种工程耗散使系统松弛并维持在期望的目标状态。虽然通用,但现有的耗散状态制备方案完全依赖于时间无关的耗散动力学,这可能使协议容易受到不必要的伪耗散的影响。PI的广泛愿景是,该项目将使一种变革性的新型耗散状态制备协议具有显着提高的速度,保真度和对错误的鲁棒性。为此,研究将大致集中在两个方向:(1)时变耗散驱动的动力学研究和(2)相关耗散驱动的动力学研究。这些理论研究将涉及开发一个全面的分析和数值框架,其中包括对开放量子系统描述有效性的一些初步探索,特别是在非平凡耗散是有用资源的情况下。例如,该项目的结果将解决有关绝热性和非马尔可夫性对油藏工程的影响的基本问题,并为存在相关噪声的量子误差校正和误差缓解提供有用的指针。这不仅对这里设想的纠缠稳定协议,而且对任何涉及量子系统动态控制的平台都具有变革潜力。PI与实验小组保持着积极的合作,他们将在基于约瑟夫森结的超导平台上测试这些想法。因此,本研究将在短期内补充和推进低维开放系统量子控制快速增长的实验能力。此外,它将有助于加强量子信息/量子光学、最优控制和强相互作用场论等不同领域之间的跨学科联系,所有这些领域都专注于远离平衡态的量子动力学。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Archana Kamal其他文献

Archana Kamal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
  • 批准号:
    2339469
  • 财政年份:
    2024
  • 资助金额:
    $ 55.73万
  • 项目类别:
    Continuing Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.73万
  • 项目类别:
    Research Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 55.73万
  • 项目类别:
    Standard Grant
Ultrafast Strong-Field Control of Coherence and Entanglement in Atoms and Molecules
原子和分子相干和纠缠的超快强场控制
  • 批准号:
    2309238
  • 财政年份:
    2023
  • 资助金额:
    $ 55.73万
  • 项目类别:
    Standard Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
  • 批准号:
    2238096
  • 财政年份:
    2023
  • 资助金额:
    $ 55.73万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 55.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324300
  • 财政年份:
    2023
  • 资助金额:
    $ 55.73万
  • 项目类别:
    Standard Grant
Precise test of the B-meson quantum entanglement based on a new method for event topology determination
基于事件拓扑确定新方法的B介子量子纠缠精确测试
  • 批准号:
    23K03429
  • 财政年份:
    2023
  • 资助金额:
    $ 55.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on CARS enhancement with quantum entanglement aiming at noninvasive glucose monitoring
针对无创血糖监测的量子纠缠CARS增强研究
  • 批准号:
    23K19224
  • 财政年份:
    2023
  • 资助金额:
    $ 55.73万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel optomechanical entanglement
新型光机纠缠
  • 批准号:
    23KF0087
  • 财政年份:
    2023
  • 资助金额:
    $ 55.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了