CAREER: Discovering Rhomboid Dynamics and Function in Membrane Protein Homeostasis
职业:发现膜蛋白稳态中的菱形动力学和功能
基本信息
- 批准号:2047391
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The complex biochemical processes occurring in biological membranes are fascinating and essential for life. Most of these processes are carried out by proteins embedded in the membranes surrounding the cells and organelles inside; these proteins comprise one third of total proteins in plants and animals. Unfortunately, misfolding of membrane proteins is a common occurrence, either due to chemical and UV damage, aging, or genetic mutations. To survive the constant, ongoing threat of protein misfolding, organisms are equipped with quality-control systems that detect and degrade these molecules. Despite intense study on these pathways, the quality-control mechanisms for removing misfolded membrane proteins have remained surprisingly elusive for over two decades. This project seeks to advance our knowledge of the critical and widely conserved process of the quality-control system(s) that maintains functional and folded membrane proteins. To attain this scientific goal, this project includes a significant component of URM education, outreach, and training to community college students. Efforts of this project focuses on: 1) providing an iBiology Spotlight lecture to expose community college students to hands-on research, role models and careers in science; 2) incorporating and developing Course-based Research Experience modules at Miramar Community College in coordination with instructors; and 3) direct involvement of research projects in the Neal laboratory at UCSD. Fulfillment of this research and educational plan will build and sustain interest in science, in particular for persistently underrepresented STEM students currently learning at community colleges.Endoplasmic Reticulum-Associated Degradation (ERAD) describes a set of conserved degradation pathways that remove misfolded proteins from the ER. Retrotranslocation is a universal feature of all ERAD pathways, entailing complete removal of misfolded substrates to the cytosol for degradation. For integral membrane substrates, this involves complete extraction of the protein, including all transmembrane spans, from the ER membrane. Despite its commonality in ERAD, retrotranslocation of integral membrane substrates has remained a mystery. This project builds on Dr. Neal’s discovery of a yeast rhomboid pseudoprotease Dfm1, which is a dedicated protein export factor for removing deleterious membrane proteins from the ER. The underlying hypothesis of this project is that Dfm1 and related rhomboid superfamily proteins are central mediators for removing aberrant membrane substrates, and loss of their function leads to profound cellular stress. Accordingly, the primary objectives to investigate this hypothesis are: 1) To understand the mechanism associated with Dfm1-mediated retrotranslocation function. This objective will employ genetic, biochemical and biophysical approaches using a tractable model system, S. cerevisiae, for deep characterization of Dfm1’s retrotranslocation function. 2) Explore a newly identified stress response pathway associated with loss of Dfm1 function. This objective will use functional genomics, biochemical, and genetic approaches to define an entirely new sensing system for membrane proteins. 3) Extend acquired understanding of yeast Dfm1 function to higher eukaryotes. This objective will determine the extent by which Dfm1’s molecular actions and functions are conserved in the related rhomboid proteins in human cells. Overall, results emerging from this work will reveal novel mechanisms for safeguarding the membrane proteome.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
发生在生物膜中的复杂的生化过程是迷人的,对生命是必不可少的。 这些过程中的大多数是由包埋在细胞和细胞器周围的膜中的蛋白质进行的;这些蛋白质占植物和动物总蛋白质的三分之一。不幸的是,膜蛋白的错误折叠是一种常见的现象,无论是由于化学和紫外线损伤,老化,或基因突变。 为了在蛋白质错误折叠的持续威胁中生存下来,生物体配备了检测和降解这些分子的质量控制系统。 尽管对这些途径进行了深入的研究,但二十多年来,去除错误折叠的膜蛋白的质量控制机制仍然令人惊讶地难以捉摸。该项目旨在提高我们对维持功能性和折叠膜蛋白的质量控制系统的关键和广泛保守过程的认识。 为了实现这一科学目标,该项目包括URM教育,推广和培训社区大学生的重要组成部分。 该项目的工作重点是:1)提供iBiology聚光灯讲座,让社区学院的学生接触动手研究,榜样和科学事业; 2)与教师协调,在米拉马尔社区学院整合和开发基于课程的研究经验模块; 3)直接参与UCSD Neal实验室的研究项目。 这项研究和教育计划的实施将建立和维持对科学的兴趣,特别是对于目前在社区学院学习的持续代表性不足的STEM学生。内质网相关降解(ERAD)描述了一组保守的降解途径,从ER中去除错误折叠的蛋白质。 逆向易位是所有ERAD途径的普遍特征,需要将错误折叠的底物完全去除到胞质溶胶中进行降解。对于完整的膜基质,这涉及从ER膜完全提取蛋白质,包括所有跨膜跨度。 尽管它的共性在ERAD,retrotranslocation的整体膜基板仍然是一个谜。 该项目建立在Neal博士发现的酵母菱形假蛋白酶Dfm 1的基础上,Dfm 1是一种专门用于从ER中去除有害膜蛋白的蛋白质输出因子。该项目的基本假设是Dfm 1和相关的菱形超家族蛋白是去除异常膜底物的中心介质,其功能的丧失导致深刻的细胞应激。因此,研究这一假设的主要目的是: 1)了解Dfm 1介导的逆转录功能的相关机制。这一目标将采用遗传,生物化学和生物物理的方法,使用一个易于处理的模型系统,S。酿酒酵母,用于深入表征Dfm 1的逆转录功能。 2)探索新发现的与Dfm 1功能丧失相关的应激反应途径。该目标将使用功能基因组学,生物化学和遗传学方法来定义一个全新的膜蛋白传感系统。 3)将对酵母Dfm 1功能的理解扩展到高等真核生物。 这一目标将确定Dfm 1的分子作用和功能在人类细胞中相关菱形蛋白中的保守程度。 总的来说,这项工作的结果将揭示保护膜蛋白质组的新机制。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Role of the Rhomboid Superfamily in ER Protein Quality Control: From Mechanisms and Functions to Diseases
Rhomboid超家族在ER蛋白质量控制中的作用: 从机制和功能到疾病
- DOI:10.1101/cshperspect.a041248
- 发表时间:2023-02-01
- 期刊:
- 影响因子:7.2
- 作者:Bhaduri, Satarupa;Scott, Nicola A. A.;Neal, Sonya E. E.
- 通讯作者:Neal, Sonya E. E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sonya Neal其他文献
Proteotoxic stress and the ubiquitin proteasome system
蛋白毒性应激和泛素蛋白酶体系统
- DOI:
10.1016/j.semcdb.2023.08.002 - 发表时间:
2024-03-15 - 期刊:
- 影响因子:6.000
- 作者:
Rachel Kandel;Jasmine Jung;Sonya Neal - 通讯作者:
Sonya Neal
Sonya Neal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
- 批准号:
2904538 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Studentship
Discovering Modular Catalysts for Selective Synthesis with Computation
通过计算发现用于选择性合成的模块化催化剂
- 批准号:
2400056 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Research Grant
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
- 批准号:
2348495 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: Discovering eukaryotic symbionts across diverse insect communities
合作研究:发现不同昆虫群落中的真核共生体
- 批准号:
2405207 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Discovering How Root Sense Hard Soils
探索根系如何感知硬土
- 批准号:
EP/Y036697/1 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Research Grant
Discovering missing links in neuropeptide evolution and function
发现神经肽进化和功能中缺失的环节
- 批准号:
BB/X001806/1 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Research Grant
Collaborative Research: Discovering eukaryotic symbionts across diverse insect communities
合作研究:发现不同昆虫群落中的真核共生体
- 批准号:
2405206 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Discovering How Stress Induced Histomorphogenesis Effects the Long-term Leaching from an Implanted Medical Device using Phase Field Models
使用相场模型发现应力诱导的组织形态发生如何影响植入医疗器械的长期浸出
- 批准号:
2309538 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant