CAREER: Photonic Integrated Guided-Wave-Driven Metasurfaces
职业:光子集成导波驱动超表面
基本信息
- 批准号:2047446
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Wiring light on a chip like electronic circuits, integrated photonics provides a promising long-term solution for increasing demands for data transmission bandwidth and energy efficiency of computing and communication systems. A photonic integrated circuit (PIC) combining many light-controlling components into a single chip, similar to complementary metal oxide semiconductor (CMOS) chips that have revolutionized the electronics industry, offers great advantages in terms of speed, bandwidth, reliability, scalability, power consumption, and etc. In order to fully exploit the benefits of PICs in free-space applications, it is crucial to have an interface that can flexibly control light when it converts between guided and free-space modes. However, conventional coupling techniques such as edge couplers and surface gratings have limited functionalities and lack of the capability to complete control over light. Although arrays of gratings can achieve more advanced functions, such as off-chip beam steering, focusing, and holographic image construction, they have large footprints and suffer from loss due to the existence of high-order diffractions. Therefore, there is a strong demand for a unified approach to achieve complex free-space optical functions on PICs. The major goal of the proposed program is to develop a hybrid architecture where metasurfaces – ultrathin artificial surfaces which manipulate light by locally imposing abrupt changes to optical properties through engineered sub-wavelength structures also known as meta-atoms – are directly driven by guided waves to realize complex free-space functions. The proposed program will include closely integrated educational activities (such as developing a new course on nanophotonics) designed to stimulate undergraduate and graduate students to pursue engineering career by exposing them to the exciting development of nanophotonic devices solving important societal problems in optical computing, communication, and networking. Besides, nanophotonic cloud computing tools will be developed that are free-to-run in web browsers without the need for powerful workstations that will be especially beneficial for economically disadvantaged research communities worldwide. Furthermore, outreach activities, such as organizing fun exhibitions of optics effects, will also be provided to promote the interests and participations of K-12 teachers and students in local schools and public libraries.The overarching goal of this research program is to combine two powerful, complimentary technologies – the integrated photonics and the metasurface – together to develop a new architecture where metasurfaces are directly driven by the guided waves in PICs for realizing complex optical functions. The meta-atom building blocks with sizes much smaller than the optical wavelength will be placed on top of photonic integrated components. Through the metasurfaces consisting of such meta-atoms, the guided light can be molded to any desired complex light fields in free space or in PICs. The proposed research will establish a theory, design, material synthesis, and device nanofabrication platform and provide a complete photonic integrated route for complete light control. Tremendous benefits will be offered by the proposed hybrid architecture: (1) metasurfaces that are driven directly by guided waves in PICs; (2) light can be routed to different metasurfaces performing multiple complex functions on a single waveguide; and (3) PICs are now empowered with the ability to control light at the subwavelength scale. The technology will pave new exciting ways for building multifunctional photonic integrated devices with flexible access to free space and lead to a large spectrum of novel applications particularly where the grand challenges of the system size, weight, and power, performance are concerned.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
集成光子学像电子电路一样在芯片上布线光,为计算和通信系统的数据传输带宽和能源效率的需求不断增长提供了一个有前途的长期解决方案。光子集成电路(PIC)将许多光控制组件组合到单个芯片中,类似于已经彻底改变了电子工业的互补金属氧化物半导体(CMOS)芯片,在速度、带宽、可靠性、可扩展性、功耗等方面提供了巨大的优势。为了充分利用PIC在自由空间应用中的益处,关键在于具有当光在引导模式和自由空间模式之间转换时能够灵活地控制光的界面。然而,诸如边缘耦合器和表面光栅的常规耦合技术具有有限的功能并且缺乏完全控制光的能力。虽然光栅阵列可以实现更高级的功能,例如片外光束转向,聚焦和全息图像构建,但由于高阶衍射的存在,它们具有大的足迹并遭受损失。因此,有一个统一的方法来实现复杂的自由空间光学功能的PIC的强烈需求。拟议计划的主要目标是开发一种混合架构,其中元表面-通过工程亚波长结构(也称为元原子)对光学特性进行局部突变来操纵光的人工表面-直接由导波驱动以实现复杂的自由空间功能。拟议的计划将包括紧密结合的教育活动(如开发纳米光子学的新课程),旨在刺激本科生和研究生通过将他们暴露于解决光学计算,通信和网络中重要社会问题的纳米光子器件的令人兴奋的发展来追求工程事业。此外,将开发纳米光子云计算工具,这些工具可以在Web浏览器中免费运行,而不需要强大的工作站,这将特别有利于全球经济困难的研究社区。此外,我们亦会举办外展活动,例如举办有趣的光学效果展览,以提高本地学校及公共图书馆的中小学教师及学生的兴趣及参与度。互补技术-集成光子学和超颖表面-共同开发了一种新的架构,其中元表面直接由PIC中的导波驱动,以实现复杂的光学功能。尺寸比光波长小得多的元原子构建块将被放置在光子集成组件的顶部。通过由这种超原子组成的超表面,被引导的光可以被塑造成自由空间或PIC中的任何期望的复杂光场。本研究将建立一个理论、设计、材料合成及元件奈米织物的平台,并提供一个完整的光控制的光子整合路径。所提出的混合架构将提供巨大的好处:(1)由PIC中的导波直接驱动的超颖表面;(2)光可以被路由到在单个波导上执行多个复杂功能的不同超颖表面;以及(3)PIC现在具有在亚波长尺度上控制光的能力。该技术将为构建具有灵活访问自由空间的多功能光子集成器件铺平新的令人兴奋的道路,并导致大量新颖的应用,特别是在系统尺寸,重量和功率的巨大挑战中,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generation of Light Transverse Spin with a Vectorial Field Controlling Metasurface
- DOI:10.1364/cleo_qels.2022.fm4h.2
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:P. Terekhov;Md. Tarek Rahman;Yimin Ding;Xingwang Zhang;X. Ni
- 通讯作者:P. Terekhov;Md. Tarek Rahman;Yimin Ding;Xingwang Zhang;X. Ni
Photonic Integrated Full-Color Holograms for Visible Light Based on Meta-Waveguides
- DOI:10.1364/cleo_qels.2022.fm2h.1
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Yimin Ding;Lidan Zhang;Xi Chen;Yao Duan;Md. Tarek Rahman;X. Ni
- 通讯作者:Yimin Ding;Lidan Zhang;Xi Chen;Yao Duan;Md. Tarek Rahman;X. Ni
A Robust and Non-Interleaved Full-Color Metasurface Hologram with Suppressed Color Crosstalk
- DOI:10.1364/cleo_qels.2022.fm2h.3
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Yimin Ding;Yao Duan;Lidan Zhang;X. Ni
- 通讯作者:Yimin Ding;Yao Duan;Lidan Zhang;X. Ni
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xingjie Ni其他文献
Achromatic metalenses for full visible spectrum with extended group delay control via dispersion-matched layers
用于全可见光谱的消色差超透镜,通过色散匹配层实现扩展群延迟控制
- DOI:
10.1038/s41467-024-53701-8 - 发表时间:
2024-11-07 - 期刊:
- 影响因子:15.700
- 作者:
Shengyuan Chang;Lidan Zhang;Yao Duan;Md Tarek Rahman;Abrar Islam;Xingjie Ni - 通讯作者:
Xingjie Ni
Xingjie Ni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xingjie Ni', 18)}}的其他基金
Collaborative Research: Metasurface-Enabled Broadband Circular Dichroism Spectroscopy and Imaging
合作研究:超表面宽带圆二色光谱和成像
- 批准号:
2305139 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Compressive ultrahigh-speed imaging beyond trillions of frames per second using spatiotemporally encoded metasurfaces
使用时空编码超表面进行每秒数万亿帧的压缩超高速成像
- 批准号:
2114266 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
- 批准号:
2338798 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
- 批准号:
2238096 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: GaSb-based Photonic Integrated Circuits for Short- and Mid-Wave Infrared Applications
职业:用于短波和中波红外应用的 GaSb 基光子集成电路
- 批准号:
2144375 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Mixed-Signal Photonic Integrated Circuits for Energy-Efficient High-Speed Data Interfaces
职业:用于节能高速数据接口的混合信号光子集成电路
- 批准号:
2014109 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Mixed-Signal Photonic Integrated Circuits for Energy-Efficient High-Speed Data Interfaces
职业:用于节能高速数据接口的混合信号光子集成电路
- 批准号:
1727447 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Glass-Based Fexible Integrated Photonic Devices
职业:玻璃基柔性集成光子器件
- 批准号:
1453218 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Mixed-Signal Photonic Integrated Circuits for Energy-Efficient High-Speed Data Interfaces
职业:用于节能高速数据接口的混合信号光子集成电路
- 批准号:
1454411 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Mid-Infrared Photonic Devices and Integrated Circuits on Silicon
职业:中红外光子器件和硅集成电路
- 批准号:
1150672 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Programmable, Reconfigurable, and Tunable Photonic Integrated Circuit Platform through the Fusion of Photonic Crystals and Nano-Electro-Mechanical Systems
职业:通过光子晶体和纳米机电系统的融合实现可编程、可重新配置和可调谐的光子集成电路平台
- 批准号:
0954765 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Integrated All-Optical WDM Devices Using Photonic Crystals
职业:使用光子晶体的集成全光 WDM 器件
- 批准号:
0239355 - 财政年份:2003
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant