CAREER: GaSb-based Photonic Integrated Circuits for Short- and Mid-Wave Infrared Applications

职业:用于短波和中波红外应用的 GaSb 基光子集成电路

基本信息

  • 批准号:
    2144375
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-15 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

Photonic integrated circuits (PICs) based on a semiconductor made of antimony and gallium (often referred to as “antimonide”) with monolithically-integrated active and passive components that operate in the extended short- and mid-wave infrared wavelength regime are currently of significant research interest due to a wide range of emerging applications, including chemical sensing, industrial process control, and non-invasive medical diagnostics. This wavelength regime of the electromagnetic spectrum is important because it contains a number of spectral features such as strong overtones and combination molecular absorption bands in gas- and liquid-phase molecules for sensing applications. This eye-safe spectral regime also has an atmospheric transmission window, which makes it suitable for LiDAR/remote sensing applications. This Faculty Early Career Development (CAREER) project will develop the first non-telecom photonic IC platform based on the antimonide material system. The scientific insights and technological advances stemming from the research will also broadly impact the field of photonics by enabling operation in this underdeveloped spectral region. Since the research topic will cross different disciplines of science and engineering, such as optics, materials science, electrical engineering, physics, and chemistry, it offers a range of potential, hands-on learning activities that will engage students of varying backgrounds. In addition to high impact research advancement, this project will support interdisciplinary education activities in nanoscience and nanotechnology. The educational and outreach components are aimed at promoting interests in science, technology, engineering, and mathematics (STEM) disciplines and propagating educational opportunities by exposing K-12, undergraduate and graduate students to advancements in optics and photonics.The overarching goals of this project are to advance intellectual understanding of the low-bandgap antimonide material system for the development and demonstration of a photonic integrated circuits (PICs) technology platform in the extended short- and mid-wave infrared (S-MWIR) spectral band and to expand educational opportunities related to infrared materials science and device technology. The primary research goals of the proposed project are to (1) develop the first non-telecom photonic integrated circuits platform, (2) realize novel single-chip–based widely tunable lasers and other PIC components with an emission wavelength range of 2.2-3.4 μm and finally (3) demonstrate highly-integrated widely tunable sensing PICs. This integrated photonic demonstration will prove feasibility for future, on-chip, low-cost, compact, robust, and energy-efficient photonic subsystems that will enable a wide range of practical applications. The work performed within this project will generate new fundamental knowledge related to the GaSb material system and build innovations at the photonic components- as well as -IC levels. To establish such a monolithic platform, widely-tunable semiconductor lasers, photodetectors, low-loss waveguides and 1 × 2 optical splitters in the wavelength range of 2.2-3.4 µm, will be designed, grown, fabricated and tested. Molecular beam epitaxy will be used for the growth of device structures. Multiple, individual SG-DBR (Sampled Grating-Distributed Bragg Reflector) lasers with tuning ranges of 150-250 nm (depending on the center emission wavelength) will be needed to cover the entire targeted range. As a result, the highly-integrated optical devices and subsystems will simultaneously improve performance and efficiency as well as help meet low size, weight, power and cost (SWaP-C) constraints for next-generation S-MWIR photonic technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光子集成电路(PICs)基于由锑和镓(通常称为“锑化物”)制成的半导体,具有单片集成的有源和无源组件,在扩展的短波和中波红外波长范围内工作,由于广泛的新兴应用,包括化学传感,工业过程控制和非侵入性医疗诊断,目前具有重要的研究兴趣。电磁波谱的这种波长范围很重要,因为它包含许多光谱特征,如强泛音和气相和液相分子的组合分子吸收带,用于传感应用。这种对眼睛安全的光谱也有一个大气传输窗口,这使得它适合激光雷达/遥感应用。该学院早期职业发展(Career)项目将开发第一个基于锑化材料系统的非电信光子IC平台。该研究的科学见解和技术进步也将广泛影响光子学领域,使这一不发达光谱区域的操作成为可能。由于研究课题将跨越科学和工程的不同学科,如光学、材料科学、电气工程、物理和化学,它提供了一系列潜在的、动手学习的活动,将吸引不同背景的学生。除了高影响力的研究进展,该项目将支持纳米科学和纳米技术的跨学科教育活动。教育和推广部分旨在提高人们对科学、技术、工程和数学(STEM)学科的兴趣,并通过让K-12、本科生和研究生接触光学和光子学的进步来宣传教育机会。该项目的总体目标是促进对低带隙锑化材料系统的知识理解,以开发和演示扩展短波和中波红外(S-MWIR)光谱波段的光子集成电路(PICs)技术平台,并扩大与红外材料科学和器件技术相关的教育机会。该项目的主要研究目标是:(1)开发第一个非电信光子集成电路平台,(2)实现新型基于单片机的宽可调谐激光器和其他发射波长范围为2.2-3.4 μm的PIC组件,最后(3)展示高度集成的宽可调谐传感PIC。该集成光子演示将证明未来片上、低成本、紧凑、健壮和节能的光子子系统的可行性,从而实现广泛的实际应用。在这个项目中进行的工作将产生与GaSb材料系统相关的新的基础知识,并在光子元件和集成电路水平上进行创新。为了建立这样一个单片平台,将设计、生长、制造和测试波长范围为2.2-3.4 μ m的宽可调谐半导体激光器、光电探测器、低损耗波导和1 × 2光分路器。分子束外延将用于器件结构的生长。需要多个单独的SG-DBR(采样光栅-分布式布拉格反射器)激光器,其调谐范围为150-250 nm(取决于中心发射波长),以覆盖整个目标范围。因此,高度集成的光学器件和子系统将同时提高性能和效率,并有助于满足下一代S-MWIR光子技术的低尺寸、低重量、低功耗和低成本(SWaP-C)限制。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards GaSb-Based Monolithically Integrated Widely-Tunable Lasers for Extended Short- and Mid-Wave Infrared Wavelengths
面向 GaSb 基单片集成宽可调激光器,用于扩展短波和中波红外波长
  • DOI:
    10.1109/jqe.2023.3236395
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    You, Weicheng;Dwivedi, Sarvagya;Faruque, Imad I.;John, Demis D.;McFadden, Anthony P.;Palmstrom, Christopher J.;Coldren, Larry A.;Arafin, Shamsul
  • 通讯作者:
    Arafin, Shamsul
Design of GaSb-based monolithic passive photonic devices at wavelengths above 2 µm
波长超过 2 µm 的 GaSb 基单片无源光子器件的设计
  • DOI:
    10.1088/2515-7647/ace509
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sumon, Md Saiful;Sankar, Shrivatch;You, Weicheng;Faruque, Imad I;Dwivedi, Sarvagya;Arafin, Shamsul
  • 通讯作者:
    Arafin, Shamsul
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shamsul Arafin其他文献

Rh/InGaNsub1−/subemsubx/sub/emOemsubx/sub/em nanoarchitecture for light-driven methane reforming with carbon dioxide toward syngas
RH/INGANSUB1-/subemsubx/sub/sub/emoeemsubx/sub/sub/em纳米结构,用于轻型甲烷改革,二氧化碳朝向syngas
  • DOI:
    10.1016/j.scib.2024.02.020
  • 发表时间:
    2024-05-30
  • 期刊:
  • 影响因子:
    21.100
  • 作者:
    Yixin Li;Jinglin Li;Tianqi Yu;Liang Qiu;Syed M. Najib Hasan;Lin Yao;Hu Pan;Shamsul Arafin;Sharif Md. Sadaf;Lei Zhu;Baowen Zhou
  • 通讯作者:
    Baowen Zhou
Luminescence and Raman spectroscopic properties of cubic boron nitride grown by drop-casting technique
  • DOI:
    10.1016/j.jcrysgro.2022.126781
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mohammad Mahafuzur Rahaman;Shantanu Saha;Syed M.N. Hasan;Weicheng You;Arnob Ghosh;Md Saiful Islam Sumon;S.K. Shafaat Saud Nikor;Benjamin Freeman;Shrivatch Sankar;Hendrik Colijn;Sharif Md. Sadaf;Jivtesh Garg;Shamsul Arafin
  • 通讯作者:
    Shamsul Arafin
An All-Optical Neuron for Scaling Integrated Photonic Neural Networks
用于扩展集成光子神经网络的全光神经元
  • DOI:
    10.1109/ipc57732.2023.10360538
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Md. Saiful Islam Sumon;Mihai Crisan;Weicheng You;Shrivatch Sankar;Imad I. Faruque;Sarvagya Dwivedi;Shamsul Arafin
  • 通讯作者:
    Shamsul Arafin

Shamsul Arafin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shamsul Arafin', 18)}}的其他基金

U.S.-Ireland R&D Partnership - Visible Light-wave Generation and Manipulation through Non-Linear Waveguide Technology (VIBRANT)
美国-爱尔兰 R
  • 批准号:
    2310869
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Tunnel Junction Based AlGaN Ultraviolet Lasers
基于隧道结的 AlGaN 紫外激光器
  • 批准号:
    2034140
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Toward Monolithic Optically-Pumped Single-Photon Sources Based on Deterministic InGaN Quantum Dots in GaN Nanowires
EAGER:基于 GaN 纳米线中确定性 InGaN 量子点的单片光泵浦单光子源
  • 批准号:
    2020015
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

MOCVD法制备用于微光夜视技术的GaSb红外光阴极及其激活技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于光电流分布光栅结构的GaSb基多段级联集成近中红外光梳研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
Er2O3/AlN/GaSb叠层栅界面失稳调控及其MOS器件性能优化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
红外调制微分光谱扫描成像研究InAs/GaSb超晶格空间均匀性机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于隧穿机制的GaSb基中波红外激光器设计及制备研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
硅基InAs/GaSb超晶格红外探测材料的MBE生长与特性研究
  • 批准号:
    62104236
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
大尺寸高质量GaSb单晶生长及相关基础研究
  • 批准号:
    52002275
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
超窄线宽稳频GaSb基半导体外腔激光器研究
  • 批准号:
    62004179
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
拓扑绝缘体InAs/GaSb体系中的激子凝聚效应研究
  • 批准号:
    12004039
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于硅光子多环反馈结构的GaSb基~2μm波长混合集成外腔可调谐激光器研究
  • 批准号:
    61964007
  • 批准年份:
    2019
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

NSF-BSF: Electrical mitigation of radiation-induced defects in InAs/GaSb structures for infrared sensing
NSF-BSF:用于红外传感的 InAs/GaSb 结构中辐射引起的缺陷的电气缓解
  • 批准号:
    2310285
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Long wavelength (>1400 nm) GaSb quantum ring VCSELs for consumer applications
适用于消费类应用的长波长 (>1400 nm) GaSb 量子环 VCSEL
  • 批准号:
    2482071
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
GaAs-based vertical-cavity surface-emitting lasers with GaSb quantum rings (QRVCSELs)
具有 GaSb 量子环的 GaAs 垂直腔表面发射激光器 (QRVCSEL)
  • 批准号:
    103444
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
New magnetic properties and a creation of next generation devices using Fe doped InAs/GaSb heterostructures
新的磁特性和使用 Fe 掺杂 InAs/GaSb 异质结构创建下一代器件
  • 批准号:
    17H04922
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
GaSb/GaAs quantum ring single photon LEDs (QR_SPLEDs)
GaSb/GaAs 量子环单光子 LED (QR_SPLED)
  • 批准号:
    132537
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Feasibility Studies
GaSb/GaAs quantum ring single photon LEDs (QR_SPLEDs)
GaSb/GaAs 量子环单光子 LED (QR_SPLED)
  • 批准号:
    EP/P034233/1
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Self-assembled GaSb/GaAs quantum dots and rings for light-emitting devices
用于发光器件的自组装GaSb/GaAs量子点和环
  • 批准号:
    1818652
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Collaborative Research: Highly mismatched GaSb-GaAs thin film multijunction solar cells for high efficiency
合作研究:高度失配的 GaSb-GaAs 薄膜多结太阳能电池,实现高效率
  • 批准号:
    1509949
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
GaSb/GaAs quantum rings as single photon sources
GaSb/GaAs 量子环作为单光子源
  • 批准号:
    EP/M50838X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Collaborative Research: Highly mismatched GaSb-GaAs thin film multijunction solar cells
合作研究:高度失配的GaSb-GaAs薄膜多结太阳能电池
  • 批准号:
    1509468
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了