CAREER: Statistical approaches and computational tools for analyzing spatially-resolved single-cell transcriptomics data

职业:用于分析空间分辨单细胞转录组数据的统计方法和计算工具

基本信息

  • 批准号:
    2047611
  • 负责人:
  • 金额:
    $ 62.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Both healthy and diseased tissues are comprised of a multitude of interacting cells representing many different cell-types and cell-states. Rapid advances in sequencing and imaging technologies are making it possible to profile these differences for hundreds to thousands of genes in hundreds to thousands of individual cells and small groups of cells in a spatially resolved manner. However, statistical methods and computational tools are still needed to model and analyze these high-dimensional spatially resolved measurements in order to extract relevant biological insights. This project will develop statistical approaches for analyzing these spatially resolved transcriptomics datasets in order to characterize spatial gene expression patterns and associate them with underlying cellular phenotypes and functions, particularly within tissues. Such characterization will help provide insights into how spatial context and organization may impact cellular phenotype and function. The developed approaches will also be made available to the scientific community as open-source software and be applicable to other biological contexts. Finally, instructional material including case study tutorials developed through this project will be used in a hands-on-learning course to engage young girls in computer science. On a technical level, to analyze spatially resolved transcriptomics data of tissues, this project will use a density agnostic encoding of spatial positional information using Voronoi tessellation to accommodate variations in cell density common to tissues. Spatial autocorrelation and cross-correlation analyses will be used to identify genes with significant spatial patterns that may further be indicative of cell-cell communication. Convolutional neural network-based approaches will be applied to integrate the subcellular spatial organization of mRNAs in cell segmentation within tissues and be combined with previous RNA velocity models in order to infer temporal dynamics and delineate potential cellular migration within tissues. To interrogate how gene expression variation may be associated with cellular phenotype, neural networks will also be applied to predict molecular features directly from histological staining images of tissues. Finally, a client-side web application will be developed to enable such exploration and analysis of spatially resolved transcriptomics data within the browser. For more information regarding the ongoing results of this project, please see: https://jef.works/NSF_CAREERThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
健康和患病的组织都由大量相互作用的细胞组成,这些细胞代表许多不同的细胞类型和细胞状态。测序和成像技术的快速发展使得以空间分辨的方式分析数百至数千个单个细胞和小细胞群中数百至数千个基因的这些差异成为可能。然而,仍然需要统计方法和计算工具来建模和分析这些高维空间分辨测量,以提取相关的生物学见解。该项目将开发用于分析这些空间分辨转录组学数据集的统计方法,以表征空间基因表达模式,并将其与潜在的细胞表型和功能相关联,特别是在组织内。这种表征将有助于深入了解空间背景和组织如何影响细胞表型和功能。所制定的方法也将作为开放源码软件提供给科学界,并适用于其他生物背景。最后,通过该项目编写的教学材料,包括案例研究教程,将用于动手学习课程,以吸引年轻女孩学习计算机科学。在技术层面上,为了分析组织的空间分辨转录组学数据,该项目将使用Voronoi镶嵌对空间位置信息进行密度不可知编码,以适应组织常见的细胞密度变化。空间自相关和互相关分析将用于鉴定具有显著空间模式的基因,所述显著空间模式可进一步指示细胞-细胞通信。基于卷积神经网络的方法将被应用于整合组织内细胞分割中mRNA的亚细胞空间组织,并与先前的RNA速度模型相结合,以推断时间动态并描绘组织内潜在的细胞迁移。为了探究基因表达变异如何与细胞表型相关,神经网络也将被应用于直接从组织的组织学染色图像预测分子特征。最后,将开发一个客户端网络应用程序,使这种探索和分析的空间分辨转录组学数据在浏览器中。有关该项目正在进行的成果的更多信息,请参阅:https://jef.works/NSF_CAREERThis奖项反映了NSF的法定使命,并已被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jean Fan其他文献

Single-cell morphology encodes functional subtypes of senescence in aging human dermal fibroblasts
单细胞形态编码衰老人真皮成纤维细胞的衰老功能亚型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pratik Kamat;Nico Macaluso;Chanhong Min;Yukang Li;Anshika Agrawal;Aaron Winston;Lauren Pan;Bartholomew Starich;Teasia Stewart;Pei;Jean Fan;Jeremy D. Walston;Jude M. Phillip
  • 通讯作者:
    Jude M. Phillip
Multi scale diffeomorphic metric mapping of spatial transcriptomics datasets
空间转录组数据集的多尺度微分同态度量映射
Expressionof Sf3b1- K700Ein Murine B Cells Causes Pre-mRNA Splicing and Altered B Cell Differentiation and Function
Sf3b1-K700E 在小鼠 B 细胞中的表达导致前 mRNA 剪接并改变 B 细胞分化和功能
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lili Wang;Rutendo G Gambe;Jean Fan;Youzhong Wan;Angela N. Brooks;Jing Sun;Esther A. Obeng;D. Neuberg;M. Meyerson;M. Fleming;B. Ebert;Ruben D Carrasco;Catherine J. Wu
  • 通讯作者:
    Catherine J. Wu
First-In-Human Phase I Study of Tinengotinib (TT-00420), a Multiple Kinase Inhibitor, as a Single Agent in Patients With Advanced Solid Tumors
Tinengotinib (TT-00420)(一种多激酶抑制剂)作为单药治疗晚期实体瘤患者的首次人体 I 期研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Piha;Binghe Xu;E. Dumbrava;Siqing Fu;D. Karp;F. Meric;David S Hong;J. Rodón;A. Tsimberidou;K. Raghav;J. Ajani;Anthony P. Conley;Frank Mott;Ying Fan;Jean Fan;Peng Peng;Hui Wang;Shumao Ni;Caixia Sun;Xiaoyan Qiang;Wendy J Levin;B. Ngo;Q. Ru;Frank Wu;M. Javle
  • 通讯作者:
    M. Javle
UBiT2: a client-side web-application for gene expression data analysis
UBiT2:用于基因表达数据分析的客户端 Web 应用程序
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jean Fan;David Fan;Kamil Slowikowski;Nils Gehlenborg;P. Kharchenko
  • 通讯作者:
    P. Kharchenko

Jean Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Statistical physics and network-based approaches for elucidating molecular biomarkers of COPD
阐明 COPD 分子生物标志物的统计物理学和基于网络的方法
  • 批准号:
    10559835
  • 财政年份:
    2023
  • 资助金额:
    $ 62.06万
  • 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 62.06万
  • 项目类别:
    Studentship
CAREER: New Statistical Approaches for Studying Evolutionary Processes: Inference, Attribution and Computation
职业:研究进化过程的新统计方法:推理、归因和计算
  • 批准号:
    2143242
  • 财政年份:
    2022
  • 资助金额:
    $ 62.06万
  • 项目类别:
    Continuing Grant
Statistical approaches to improving functional connectivity estimates with an application to autism
改善功能连接估计的统计方法及其在自闭症中的应用
  • 批准号:
    10598631
  • 财政年份:
    2022
  • 资助金额:
    $ 62.06万
  • 项目类别:
Innovative development of statistical and machine learning approaches for financial and actuarial risk measurement
用于财务和精算风险测量的统计和机器学习方法的创新开发
  • 批准号:
    22H00834
  • 财政年份:
    2022
  • 资助金额:
    $ 62.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Improving Statistical Machine Learning approaches for Time-to-Event Prediction Modelling
改进事件时间预测建模的统计机器学习方法
  • 批准号:
    2722161
  • 财政年份:
    2022
  • 资助金额:
    $ 62.06万
  • 项目类别:
    Studentship
Statistical methods for analyzing messy microbiome data: detection of hidden artifacts and robust modeling approaches
分析杂乱微生物组数据的统计方法:隐藏伪影的检测和稳健的建模方法
  • 批准号:
    10708908
  • 财政年份:
    2022
  • 资助金额:
    $ 62.06万
  • 项目类别:
Applications of Stochastic Machine Learning and Statistical Signal Processing Approaches to Automatic Music Transcription and Visualisation
随机机器学习和统计信号处理方法在自动音乐转录和可视化中的应用
  • 批准号:
    2738835
  • 财政年份:
    2022
  • 资助金额:
    $ 62.06万
  • 项目类别:
    Studentship
New Bayesian statistical mechanical approaches to integrative structural biology using unassigned NMR and mass spectrometry
使用未分配的核磁共振和质谱进行综合结构生物学的新贝叶斯统计机械方法
  • 批准号:
    RGPIN-2022-03287
  • 财政年份:
    2022
  • 资助金额:
    $ 62.06万
  • 项目类别:
    Discovery Grants Program - Individual
Hedging of longevity/mortality risks and statistical approaches to modelling mortality rates
长寿/死亡风险的对冲和死亡率建模的统计方法
  • 批准号:
    RGPIN-2019-06782
  • 财政年份:
    2022
  • 资助金额:
    $ 62.06万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了