CAREER: Models of curves and non-archimedean geometry
职业:曲线和非阿基米德几何模型
基本信息
- 批准号:2047638
- 负责人:
- 金额:$ 47.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The "characteristic p world" (for p some prime number) is one where, every time you take p steps forward, you wind up back where you start. Far from being esoteric, this world describes the procession of the days of the week (p = 7), the fundamentals of computer architecture (p = 2), and is also the setting for important cryptosystems. Characteristic p algebraic geometry is the study of geometric objects ("varieties") given by solutions to polynomial equations in this world (e.g., the elliptic curves fundamental to the aforementioned cryptosystems), whereas mixed characteristic algebraic geometry is the study of varieties in a "hybrid" world serving as a bridge from the characteristic p world to our more familiar world where all directions go on forever. A singularity is a place where a variety has crossings, corners, or otherwise fails to be smooth. This project brings new algebraic techniques to bear on the topic of singularities in mixed characteristic algebraic geometry, with one main goal to explicitly analyze what processes are necessary to "resolve" them, i.e, smooth them out. The educational plan for the project provides opportunities at levels from high school to graduate school. Specifically, the PI's graduate students will work directly with the PI on the main research project, the PI will advise undergraduate research in related areas of number theory, the PI will help plan events for Baruch College's chapter of the Association for Women in Mathematics, and the PI will continue his commitment to mathematics education in Liberia by running a mathematics competition for Liberian high school students, as well as a series of remote workshops for their teachers.The first part of the project is dedicated to applications and generalizations of Mac Lane valuations, which give explicit, computationally useful descriptions of normal models of the projective line over a valued field. Mac Lane valuations date back over 80 years, but it is only this past decade that they have been successfully used to attack problems involving models of curves, such as computing resolutions of certain arithmetic surface singularities and verifying conductor-discriminant inequalities. The PI will apply Mac Lane valuations to (1) refine his previous results on conductor-discriminant inequalities for hyperelliptic curves and extend them to superelliptic curves and (2) shed light on the relationship between regular models, semistable models, and the ramification theory of ``purely arithmetic'' covers of Berkovich spaces. Furthermore, he will work to build a theory of Mac Lane valuations for higher genus curves. The second part of the project is devoted to understanding when branched Galois covers of curves lift from characteristic p to characteristic zero and to obtaining information about the geometry of the space of lifts. The PI will use moduli-theoretic techniques to attack the lifting problem in towers for cyclic covers, and he will continue his long-term work toward a classification of the so-called local Oort groups and the weak local Oort groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
“特征p世界”(对于p个质数)是这样一个世界,在这个世界里,你每向前走p步,你就会回到起点。这个世界远不是深奥的,它描述了一周中几天的进程(p=7),计算机体系结构的基础(p=2),也是重要密码系统的背景。特征p代数几何是研究由这个世界中的多项式方程的解(例如,前述密码系统的基本椭圆曲线)所给出的几何对象(种类),而混合特征代数几何是研究作为从特征p世界到我们更熟悉的世界的桥梁的混合世界中的种类,在那里所有方向都是永恒的。奇点是一种变化有交叉、拐角或其他不顺畅的地方。这个项目带来了新的代数技术来处理混合特征代数几何中的奇点这一主题,一个主要目标是明确地分析需要什么过程来“解决”它们,即使它们变得平滑。该项目的教育计划提供了从高中到研究生的各个级别的机会。具体地说,PI的研究生将直接与PI合作进行主要研究项目,PI将为数论相关领域的本科生研究提供建议,PI将帮助规划Baruch College的妇女数学协会分会的活动,PI将通过为利比里亚高中生举办数学竞赛以及为他们的教师举办一系列远程研讨会来继续他对利比里亚数学教育的承诺。项目的第一部分致力于Mac Lane估值的应用和推广,这些估值对有价值领域上投影线的正常模型提供了明确的、计算上有用的描述。Mac Lane的估值可以追溯到80多年前,但只是在过去的十年里,它们才被成功地用于解决涉及曲线模型的问题,例如计算某些算术曲面奇点的分辨率和验证导体判别式不等式。PI将应用Mac Lane的赋值来(1)改进他以前关于超椭圆曲线的导体判别不等式的结果,并将其推广到超椭圆曲线,以及(2)阐明正则模型、半稳定模型和Berkovich空间的“纯算术”覆盖的分支理论之间的关系。此外,他还将致力于建立高亏格曲线的Mac Lane赋值理论。该项目的第二部分致力于了解曲线的分支伽罗瓦覆盖何时从特征p提升到特征零,并获得关于提升空间的几何信息。PI将使用模论技术来解决循环覆盖塔中的提升问题,他将继续他的长期工作,将所谓的局部奥尔特群和弱局部奥尔特群进行分类。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Explicit minimal embedded resolutions of divisors on models of the projective line
投影线模型上除数的显式最小嵌入分辨率
- DOI:10.1007/s40993-022-00323-y
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Obus, Andrew;Srinivasan, Padmavathi
- 通讯作者:Srinivasan, Padmavathi
Local Oort groups and the isolated differential data criterion
局部奥尔特群和孤立微分数据准则
- DOI:10.5802/jtnb.1200
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dang, Huy;Das, Soumyadip;Karagiannis, Kostas;Obus, Andrew;Thatte, Vaidehee
- 通讯作者:Thatte, Vaidehee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Obus其他文献
Fields of moduli of three-point G-covers with cyclic p-Sylow, I
具有循环 p-Sylow, I 的三点 G 覆盖的模量场
- DOI:
10.2140/ant.2012.6.833 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Andrew Obus - 通讯作者:
Andrew Obus
Fields of moduli of three-point $G$-covers with cyclic $p$-Sylow, II
三点 $G$ 的模域 - 覆盖循环 $p$ -Sylow, II
- DOI:
10.5802/jtnb.850 - 发表时间:
2010 - 期刊:
- 影响因子:0.4
- 作者:
Andrew Obus - 通讯作者:
Andrew Obus
The (local) lifting problem for curves
曲线的(局部)提升问题
- DOI:
10.2969/aspm/06310359 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Andrew Obus - 通讯作者:
Andrew Obus
Stabilization indices of potentially Mumford curves
潜在芒福德曲线的稳定指数
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Andrew Obus;Danièle Turchetti - 通讯作者:
Danièle Turchetti
Andrew Obus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Obus', 18)}}的其他基金
Branched Galois Covers of Curves: Lifting and Reduction
曲线的分支伽罗瓦覆盖:提升和归约
- 批准号:
1900396 - 财政年份:2018
- 资助金额:
$ 47.31万 - 项目类别:
Standard Grant
Branched Galois Covers of Curves: Lifting and Reduction
曲线的分支伽罗瓦覆盖:提升和归约
- 批准号:
1602054 - 财政年份:2016
- 资助金额:
$ 47.31万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Modeling percentile curves using generalized additive models
使用广义加性模型对百分位曲线进行建模
- 批准号:
573565-2022 - 财政年份:2022
- 资助金额:
$ 47.31万 - 项目类别:
University Undergraduate Student Research Awards
RAPID: Combining Big Data in Transportation with Hospital Health Data to Build Realistic "Flattening the Curves" Models during the COVID-19 Outbreak
RAPID:将交通大数据与医院健康数据相结合,在 COVID-19 爆发期间构建现实的“压平曲线”模型
- 批准号:
2027678 - 财政年份:2020
- 资助金额:
$ 47.31万 - 项目类别:
Standard Grant
Projective models and automorphism groups on algebraic curves
代数曲线上的射影模型和自同构群
- 批准号:
15K04822 - 财政年份:2015
- 资助金额:
$ 47.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Matrix models and mirror curves
矩阵模型和镜像曲线
- 批准号:
429403-2012 - 财政年份:2012
- 资助金额:
$ 47.31万 - 项目类别:
University Undergraduate Student Research Awards
Linear Systems and Projective Models on Algebraic Curves
线性系统和代数曲线上的射影模型
- 批准号:
21540043 - 财政年份:2009
- 资助金额:
$ 47.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semiparametric Statistical Inferences for ROC Curves and Surfaces under Density Ratio Models
密度比模型下ROC曲线和曲面的半参数统计推断
- 批准号:
0603873 - 财政年份:2006
- 资助金额:
$ 47.31万 - 项目类别:
Standard Grant
Automatic generation system of subsurface structure models by micro-tremor observation
微震观测地下结构模型自动生成系统
- 批准号:
16510140 - 财政年份:2004
- 资助金额:
$ 47.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
(semi-)Stable models of modular curves and the Spectral Halo
模曲线和光谱光环的(半)稳定模型
- 批准号:
0401594 - 财政年份:2004
- 资助金额:
$ 47.31万 - 项目类别:
Continuing Grant
Mathematical Sciences: Break Curves and Isoklines in Curves Estimation Models
数学科学:曲线估计模型中的断裂曲线和等线线
- 批准号:
9305484 - 财政年份:1993
- 资助金额:
$ 47.31万 - 项目类别:
Continuing Grant