(semi-)Stable models of modular curves and the Spectral Halo

模曲线和光谱光环的(半)稳定模型

基本信息

  • 批准号:
    0401594
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

Abstract for award DMS-0401594 of ColemanI propose to determine semi-stable models of the modular curves. One now knows that every elliptic curve defined over the rationals is a quotient of a modular curve. It is said to be semi-stable if the singularities are only on its reductions and are ordinary double points. One knows, thanks to Mum-ford, that every curve has a semi-stable model, after a base extension, but for most (eg., those of prime cubed level) one doesn't know one. I plan to remedy this defect.I propose to determine semi-stable models of the modular curves. Modular curves play a prominent role in contemporary algebraic number theory. For example, they were crucial in Wiles' proof of Fermat's last theorem. One now knows that every elliptic curve defined over the rational numbers (a.k.a. the rationals) (i.e., defined by equations with only rational coefficients) is a quotient of a modular curve and this has been used to provide most of the theoretical evidence for the Birch-Swinnerton-Dyer conjecture on the structure of the set of rational points on such a curve. Modular curves first arose as smooth curves defined over the complex numbers. Shimura proved they could be defined over he rationals. A model for a curve defined the rationals is essentially a set of equations with integer coefficients. It is said to be semi-stable if its singularities incorporated in the equations are of the simplest sort. One knows, thanks to David Mumford, that every curve has a semi-stable model but for most modular curves one doesn't know one. I plan to remedy this defect.
对于科尔曼的DMS-0401594奖,我建议确定模数曲线的半稳定模型。现在人们知道,定义在有理数上的每一条椭圆曲线都是模曲线的商。如果奇点只在它的约化上,并且是普通的双点,则称它是半稳定的。人们知道,多亏了Mum-Ford,在基本扩展之后,每条曲线都有一个半稳定模型,但对于大多数(例如,优质立方体水平的曲线)来说,人们不知道一个模型。我计划弥补这一缺陷,我建议确定模数曲线的半稳定模型。模曲线在当代代数数论中占有重要地位。例如,它们在威尔斯证明费马大定理的过程中起到了至关重要的作用。现在人们知道,定义在有理数上的每一条椭圆曲线(又称。有理数是模曲线的商,它被用来为Birch-Swinnerton-Dyer关于这种曲线上有理点集的结构的猜想提供了大部分的理论证据。模曲线最初是定义在复数上的光滑曲线。下村证明了他们可以被定义在他的理性之上。定义有理数的曲线模型本质上是一组具有整数系数的方程。如果方程中包含的奇点是最简单的,则称其为半稳定的。人们知道,多亏了大卫·芒福德,每条曲线都有一个半稳定模型,但对于大多数模数曲线,人们不知道一个模型。我计划弥补这一缺陷。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Coleman其他文献

OC15. Potential influence of zoledronic acid on primary tumour response during neoadjuvant chemotherapy for breast cancer
  • DOI:
    10.1016/j.ctrv.2008.03.041
  • 发表时间:
    2008-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Winter;Helen Thorpe;Roger Burkinshaw;Samantha Beevers;Robert Coleman
  • 通讯作者:
    Robert Coleman
Impact of laparoscopic surgical algorithm to triage timing of tumor reductive surgery on overall survival in newly diagnosed advanced ovarian cancer (548)
  • DOI:
    10.1016/s0090-8258(22)01769-3
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nicole Fleming;Alpa Nick;Robert Coleman;Shannon Westin;Pedro Ramirez;Pamela Soliman;Bryan Fellman;Tyler Hilton;Kelly Rangel;Larissa Meyer;Kathleen Schmeler;Karen Lu;Anil Sood
  • 通讯作者:
    Anil Sood
Optimizing the dose of upifitamab rilsodotin (UpRi; XMT-1536), a NaPi2b-directed dolaflexin antibody drug conjugate (ADC): A posthoc analysis of a phase 1b expansion study in ovarian cancer (319)
  • DOI:
    10.1016/s0090-8258(22)01541-4
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Bradley Monk;Nicole Concin;Debra Richardson;Isabelle Ray-Coquard;Bhavana Pothuri;Christian Marth;Patricia Bernardo;Robert Burger;Ellie Im;Wassim Aldairy;Robert Coleman;Mansoor Mirza
  • 通讯作者:
    Mansoor Mirza
Mirvetuximab soravtansine (MIRV) in patients with platinum-resistant ovarian cancer with high folate receptor alpha (FRα) expression: Evaluation of sequence of therapy on anti-tumor activity in the SORAYA study (002)
叶酸受体α(FRα)高表达的铂耐药卵巢癌患者使用 Mirvetuximab soravtansine(MIRV)的情况:SORAYA 研究(002)中对治疗顺序的抗肿瘤活性评估
  • DOI:
    10.1016/j.ygyno.2023.06.468
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Robert Coleman;Ana Oaknin;Sandro Pignata;Hannelore Denys;Nicoletta Colombo;Toon Van Gorp;Jason Konner;Margarita Romeo Marin;Philipp Harter;Conleth Murphy;Brooke Esteves;Michael Method;Domenica Lorusso;Ursula Matulonis
  • 通讯作者:
    Ursula Matulonis
Development and user insights of a novel real-world treatment registry that combines germline hereditary cancer, tumor mutational landscape, and homologous recombination deficiency data with patient clinical characteristics (2179)
结合种系遗传性癌症、肿瘤突变图谱和同源重组缺陷数据以及患者临床特征的新型真实世界治疗登记系统的开发和用户见解(2179)
  • DOI:
    10.1016/j.ygyno.2023.06.300
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Lynette Poyser;Jeff Jasper;Jeffrey Tratner;Elizabeth Cogan;Ronald Alvarez;Adam Brufsky;John Chan;Robert Coleman;Martin Dietrich;Margarett Ellison;Ramez Eskander;Jason Gillman;Melissa Hodeib;Sharyn Lewin;Terri McHugh;Bradley Monk;Lauren Nye;Robert Reid;Patricia Rodriguez;Dario Roque;Thomas Slavin
  • 通讯作者:
    Thomas Slavin

Robert Coleman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Coleman', 18)}}的其他基金

Local to Global Compatibility, p-adic Local Langlands and p-adic Level Lowering/Raising
局部到全局兼容性、p-adic 局部 Langlands 和 p-adic 电平降低/升高
  • 批准号:
    0901603
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: Safe, Effective Fungicides Against Fruit Pathogens
SBIR 第一阶段:针对水果病原体的安全、有效的杀菌剂
  • 批准号:
    0214637
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Families p-Modular Forms
家庭 p-模块化形式
  • 批准号:
    0100744
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
On the p-adic Geometry of Modular Curves
模曲线的 p 进几何
  • 批准号:
    9801389
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Upgrade of Ohio State University Chemistry Department NMR Facility
俄亥俄州立大学化学系核磁共振设施升级
  • 批准号:
    9708892
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Conference for Engineering Education Program Grantees to be held in Washington, DC, Spring 1997
工程教育项目受资助者会议将于 1997 年春季在华盛顿特区举行
  • 批准号:
    9700827
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: On the p-adic Geometry of Modular Curves
数学科学:模曲线的 p 进几何
  • 批准号:
    9307195
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Russian - U.S. Scientific Cooperative Project: Petrotectonic Study of Ultrahigh-Pressure Rocks in the Kokchetav Massif and the Maksyutov Complex of the Ural Mtns.
俄罗斯-美国科学合作项目:科克切塔夫地块和乌拉尔山脉马克修托夫杂岩超高压岩石的岩石构造研究。
  • 批准号:
    9304480
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Electronic Properties, Magnetotransport and Scanning Tunneling Microscopy (STM) in Quasi-One-Dimensional Metals
准一维金属的电子特性、磁输运和扫描隧道显微镜 (STM)
  • 批准号:
    8912694
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Petrological and Tectonic Investigations of High Pressure Metamorphism in NE Oman
阿曼东北部高压变质作用的岩石学和构造研究
  • 批准号:
    8904821
  • 财政年份:
    1989
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

超α-stable过程及相关过程的大偏差理论
  • 批准号:
    10926110
  • 批准年份:
    2009
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
与稳定(Stable)过程有关的极限定理
  • 批准号:
    10901054
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
基于Alpha-stable分布的SAR影像建模与分析方法研究
  • 批准号:
    40871199
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of stable coastal blue carbon distribution survey methods using satellites, observations, models, and AI
利用卫星、观测、模型和人工智能开发稳定的沿海蓝碳分布调查方法
  • 批准号:
    23H01516
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of foundational building blocks for stable genetic modification of sea urchin embryos
开发海胆胚胎稳定遗传修饰的基础构件
  • 批准号:
    10575685
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Malignant Cell Engagement in Immune Circuits of Human Microsatellite-stable and Microsatellite-instable Colorectal Cancer
恶性细胞参与人类微卫星稳定和微卫星不稳定结直肠癌的免疫回路
  • 批准号:
    10490347
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Proteomic Analyses of Serial Prediagnostic PLCO Serum in Cases and Controls to Identify Early Detection Ovarian Cancer Biomarkers Rising in a Substantial Fraction of Cases and Stable in Most Controls
对病例和对照中的系列诊断前 PLCO 血清进行蛋白质组学分析,以识别早期检测卵巢癌生物标志物,这些生物标志物在大部分病例中上升,而在大多数对照中保持稳定
  • 批准号:
    10703252
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Malignant Cell Engagement in Immune Circuits of Human Microsatellite-stable and Microsatellite-instable Colorectal Cancer
恶性细胞参与人类微卫星稳定和微卫星不稳定结直肠癌的免疫回路
  • 批准号:
    10192022
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Infinite-dimensional stochastic systems: stable stochastic partial differential equations, spatial branching models and population genetics, and diffusions on real trees
无限维随机系统:稳定随机偏微分方程、空间分支模型和群体遗传学以及真实树上的扩散
  • 批准号:
    545729-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Neural mechanisms of stable and transient hierarchy on social decision making
稳定和瞬态层次结构对社会决策的神经机制
  • 批准号:
    10678818
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Malignant Cell Engagement in Immune Circuits of Human Microsatellite-stable and Microsatellite-instable Colorectal Cancer
恶性细胞参与人类微卫星稳定和微卫星不稳定结直肠癌的免疫回路
  • 批准号:
    10684047
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Infinite-dimensional stochastic systems: stable stochastic partial differential equations, spatial branching models and population genetics, and diffusions on real trees
无限维随机系统:稳定随机偏微分方程、空间分支模型和群体遗传学以及真实树上的扩散
  • 批准号:
    545729-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Targeting Inflammasome with stable endocannabinoid ligand AMG315. CRISPR/Cas9 and nanotechnology study in the context of HIV and cannabinoid
使用稳定的内源性大麻素配体 AMG315 靶向炎症体。
  • 批准号:
    10085922
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了