RI: CAREER : Understanding Opinions by Reasoning over Socially Grounded Language
RI:职业:通过对社会基础语言进行推理来理解观点
基本信息
- 批准号:2048001
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Social media platforms have recently emerged as the primary space for public conversations, providing a venue for people to share perspectives and for policymakers to promote their decisions and inform the public about them. The massive amount of available opinion data presents tantalizing opportunities to study the perspectives expressed on these platforms. Insights derived from this analysis can help gauge public opinion, inform public policy, and help support human decision making. Realizing these opportunities requires models adapted to the new social media settings, in which linguistic content and its social context cannot be separated. This CAREER project develops novel modeling techniques and learning algorithms for combining these two aspects under a common innovative principle -- creating a socially grounded language representation that views opinion understanding as part of a larger framework of understanding real-world scenarios (such as the implementation of specific policies or the response to an emergency situation) and their participants. This research helps provide the relevant context needed for better understanding social media content and result in highly nuanced analysis, capturing the stances, attitudes and relationships between the different stakeholders of a given real-world scenario.This project suggests a new way to conceptualize opinionated text analysis, as part of a real-world scenario, reflecting the attitudes-of and relationships-between stakeholders in the scenario from which the text emerges. A major design goal is to avoid the supervision bottleneck, and allow the system to easily adapt to new events and policy issues by using the social information associated with users as a form of indirect supervision over documents they author. This is done by representing documents, authors, referenced entities, their connections and behaviors in a shared neuro-symbolic framework enabling symbolic inference over latent entity representations learned from data. The project addresses three main challenges: (1) constructing a representation language for characterizing opinions, their targets and motivation, and the stances they express, (2) grounding opinion text in real world scenarios by infusing relevant real-world information into a neural language model, and (3) exploiting social information by formulating a unified view of social, behavioral, and textual information. These research efforts help provide nuanced insights from social media content that lacks specificity on its own, while building the computational foundations for jointly processing textual and social information.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社交媒体平台最近已成为公众对话的主要空间,为人们分享观点和决策者宣传其决定并向公众通报这些决定提供了一个场所。大量可用的意见数据为研究这些平台上表达的观点提供了诱人的机会。从这种分析中获得的见解可以帮助衡量民意,为公共政策提供信息,并帮助支持人类决策。实现这些机会需要适应新的社会媒体环境的模式,在这种环境中,语言内容及其社会背景是不可分割的。这个CAREER项目开发了新颖的建模技术和学习算法,用于在一个共同的创新原则下将这两个方面结合起来-创建一个基于社会的语言表示,将意见理解视为理解现实世界场景(例如实施特定政策或应对紧急情况)及其参与者的更大框架的一部分。 这项研究有助于提供更好地理解社交媒体内容所需的相关背景,并导致高度细致的分析,捕捉给定现实世界场景中不同利益相关者之间的立场,态度和关系。该项目提出了一种新的方式来概念化固执己见的文本分析,作为现实世界场景的一部分,反映了在产生文本的情景中利益相关者之间的态度和关系。一个主要的设计目标是避免监督瓶颈,并允许系统轻松地适应新的事件和政策问题,通过使用与用户相关联的社会信息作为一种形式的间接监督他们的文件作者。这是通过在一个共享的神经符号框架中表示文档、作者、引用实体、它们的连接和行为来实现的,该框架能够对从数据中学习到的潜在实体表示进行符号推理。该项目解决了三个主要挑战:(1)构建表征意见的表示语言,他们的目标和动机,以及他们表达的立场,(2)通过将相关的真实世界信息注入神经语言模型,将意见文本建立在真实的世界场景中,以及(3)通过制定社会,行为和文本信息的统一视图来利用社会信息。这些研究工作有助于从社交媒体内容中提供细致入微的见解,同时为联合处理文本和社交信息建立计算基础。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Goldwasser其他文献
Weakly Supervised Learning of Nuanced Frames for Analyzing Polarization in News Media
用于分析新闻媒体极化的细微框架的弱监督学习
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Shamik Roy;Dan Goldwasser - 通讯作者:
Dan Goldwasser
Towards Few-Shot Identification of Morality Frames using In-Context Learning
使用情境学习进行道德框架的小样本识别
- DOI:
10.48550/arxiv.2302.02029 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shamik Roy;Nishanth Nakshatri;Dan Goldwasser - 通讯作者:
Dan Goldwasser
“where is this relationship going?”: Understanding Relationship Trajectories in Narrative Text
“这种关系将走向何方?”:理解叙事文本中的关系轨迹
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Keen You;Dan Goldwasser - 通讯作者:
Dan Goldwasser
A First Step Towards An Interactive Neuro-Symbolic Framework for Identifying Latent Themes in Large Text Collections
迈向交互式神经符号框架的第一步,用于识别大型文本集合中的潜在主题
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Maria Leonor Pacheco;Tunazzina Islam;Lyle Ungar;Ming Yin;Dan Goldwasser;Microsoft Research - 通讯作者:
Microsoft Research
Joint Embedding Models for Textual and Social Analysis
用于文本和社会分析的联合嵌入模型
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Chang Li;Y. Lai;Jennifer Neville;Dan Goldwasser - 通讯作者:
Dan Goldwasser
Dan Goldwasser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Goldwasser', 18)}}的其他基金
Collaborative Research: III: Small: Robust Learning and Inference Protocols for Mitigating Information Pollution
合作研究:III:小型:用于减轻信息污染的鲁棒学习和推理协议
- 批准号:
2135573 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Protocol Validation using Minimally Supervised Semantic Interpretation of Text
NeTS:小型:协作研究:使用文本的最小监督语义解释进行协议验证
- 批准号:
1814105 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Understanding the Molecular Mechanisms of Insect Cuticular Chitin Maintenance
职业:了解昆虫表皮几丁质维持的分子机制
- 批准号:
2338209 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Understanding and Reducing Inequality in the Returns to K-12 STEM for College and Early Career Outcomes
职业:了解并减少 K-12 STEM 大学和早期职业成果回报的不平等
- 批准号:
2338923 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
- 批准号:
2338951 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Understanding how hierarchical organization of growth plate stem cells controls skeletal growth
职业:了解生长板干细胞的分层组织如何控制骨骼生长
- 批准号:
2339761 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Understanding and Ensuring Secure-by-design Microarchitecture in Modern Era of Computing
职业:理解并确保现代计算时代的安全设计微架构
- 批准号:
2340777 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Understanding Interface Controlled Mechanisms of Recrystallization in Microstructurally Complex Mg Alloys
职业:了解微观结构复杂镁合金中界面控制的再结晶机制
- 批准号:
2339387 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Understanding and engineering DNA supercoiling-mediated feedback in gene circuits
职业:理解和改造基因回路中 DNA 超螺旋介导的反馈
- 批准号:
2339986 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: A Bottom Up pAproach Toward Understanding the Sunlight Driven Mechanisms and Pathways for the Release of Metals from Petroleum.
职业:一种自下而上的方法来了解阳光驱动的机制和从石油中释放金属的途径。
- 批准号:
2340743 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant