CAREER: Provable Patching of Deep Neural Networks

职业:可证明的深度神经网络修补

基本信息

  • 批准号:
    2048123
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Deep neural networks (DNNs) have been successfully applied to a wide variety of problems, including image recognition, natural-language processing, medical diagnosis, and self-driving cars. As the accuracy of DNNs has increased so has their complexity and size. Moreover, DNNs are far from infallible, and mistakes made by DNNs have led to loss of life, motivating research on verification and testing to find mistakes in DNNs. In contrast, the central goal of this research is to develop techniques and tools for repairing a trained DNN once a mistake has been discovered. Provable Patching of DNNs computes a minimal change (patch) to the parameters of a trained DNN to correct its behavior according to a given specification. The project is interdisciplinary, combining the areas of Formal Methods and Machine Learning. The project develops theoretical foundations, designs efficient algorithms, and evaluates practical applications of Provable Patching of DNNs. The intellectual merits are (i) ensuring that the patching techniques are provably effective, generalizing, local, and efficient, and (ii) supporting different classes of safety and fairness specifications. The broader impacts of the project include (i) developing new undergraduate and graduate courses related to program correctness and formal methods, and (ii) broadening the participation of Computer Science undergraduate students by developing education and research activities targeting community college and transfer students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)已成功应用于各种问题,包括图像识别、自然语言处理、医疗诊断和自动驾驶汽车。随着DNN的准确性增加,其复杂性和大小也增加了。此外,DNN远非万无一失,DNN所犯的错误导致了生命的损失,激发了对验证和测试的研究,以发现DNN中的错误。相比之下,这项研究的中心目标是开发技术和工具,以便在发现错误后修复经过训练的DNN。DNN的可证明修补计算训练DNN的参数的最小变化(补丁),以根据给定的规范纠正其行为。该项目是跨学科的,结合了形式方法和机器学习领域。该项目开发了理论基础,设计了有效的算法,并评估了DNN的可证明修补的实际应用。智能优点是(i)确保修补技术是可证明有效的,通用的,本地的,和高效的,(ii)支持不同类别的安全性和公平性规范。该项目更广泛的影响包括:(i)开发与程序正确性和形式方法相关的新的本科生和研究生课程,以及(ii)通过发展针对社区学院和转学生的教育和研究活动,扩大计算机科学本科生的参与。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SyReNN: A Tool for Analyzing Deep Neural Networks
Provable repair of deep neural networks
Architecture-Preserving Provable Repair of Deep Neural Networks
  • DOI:
    10.1145/3591238
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhe Tao;Stephanie Nawas;Jacqueline Mitchell;Aditya V. Thakur
  • 通讯作者:
    Zhe Tao;Stephanie Nawas;Jacqueline Mitchell;Aditya V. Thakur
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aditya Thakur其他文献

A study on sexual risk behaviors of long-distance truck drivers in central India -
印度中部长途卡车司机的性危险行为研究 -
An Epidemiological Study on Mucormycosis Patients Admitted in Tertiary Care Hospital of Central India
印度中部三级护理医院收治的毛霉菌病患者的流行病学研究
Phase formation and mechanical properties of graphene reinforced regolith composites
  • DOI:
    10.1016/j.mtcomm.2023.106112
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jiaoli Li;Aditya Thakur;Yanxiao Li;Mianqing Yang;Gan Yuxiang;Stefan Linke;Frank Liou;Enrico Stoll;Chenglin Wu
  • 通讯作者:
    Chenglin Wu
Towards Fast and Semi-supervised Identification of Smart Meters Launching Data Falsification Attacks
实现对发起数据伪造攻击的智能电表的快速半监督识别
Pedal Preaxial Polydactyly with Duplication of Talus: A Rare Atypical Presentation
足轴前多指伴距骨重复:一种罕见的非典型表现
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pasupathy Balasubramanium;Aditya Thakur
  • 通讯作者:
    Aditya Thakur

Aditya Thakur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

EAGER: Building a Provable Differentially Private Real-time Data-blind ML Algorithm: A case study on Enhancing STEM Student Engagement in Online Learning
EAGER:构建可证明的差分隐私实时数据盲机器学习算法:关于增强 STEM 学生在线学习参与度的案例研究
  • 批准号:
    2329919
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Provable, Explainable, Efficient, Robust Deep Neural Network for Large-scale Multimedia Retrieval
用于大规模多媒体检索的可证明、可解释、高效、鲁棒的深度神经网络
  • 批准号:
    22KF0369
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
IMR: MM-1B: Longitudinal End-device based Performance Measurement of Cellular Networks with Provable Privacy
IMR:MM-1B:具有可证明隐私的蜂窝网络基于纵向终端设备的性能测量
  • 批准号:
    2319277
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Broad-Spectrum Facial Image Protection with Provable Privacy Guarantees
合作研究:SaTC:核心:中:具有可证明隐私保证的广谱面部图像保护
  • 批准号:
    2301014
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Federated Learning: Statistical Optimality and Provable Security
职业:联邦学习:统计最优性和可证明的安全性
  • 批准号:
    2144593
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Private Data Exploration with Provable Guarantees
具有可证明保证的私人数据探索
  • 批准号:
    RGPIN-2019-04770
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Provable Security of Real-world Servers: Where Online Learning Meets Server Retrofitting
实现现实服务器的可证明安全性:在线学习与服务器改造的结合
  • 批准号:
    2140175
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Broad-Spectrum Facial Image Protection with Provable Privacy Guarantees
合作研究:SaTC:核心:中:具有可证明隐私保证的广谱面部图像保护
  • 批准号:
    2114141
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRII: AF: Optimization and sampling algorithms with provable generalization and runtime guarantees, with applications to deep learning
CRII:AF:具有可证明的泛化性和运行时保证的优化和采样算法,以及深度学习的应用
  • 批准号:
    2104528
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RI: Medium: Provable Reinforcement Learning with Function Approximation and Neural Networks
RI:中:使用函数逼近和神经网络的可证明强化学习
  • 批准号:
    2107304
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了