CAREER: A Framework for Logic-based Requirements to guide Safe Deep Learning for Autonomous Mobile Systems
职业:指导自主移动系统安全深度学习的基于逻辑的要求框架
基本信息
- 批准号:2048094
- 负责人:
- 金额:$ 55.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The future where non-autonomous systems like human-driven cars are replaced by autonomous, driverless cars is now within reach. This reduction in human effort comes at a cost: in existing systems, human operators implicitly define high-level system objectives through their actions; autonomous systems lack this guidance. Popular design techniques for autonomy such as those based on deep reinforcement learning obtain such guidance from user-specified, state-based reward functions or user-provided demonstrations. Unfortunately, such techniques generally do not provide guarantees on the safe behavior of the trained controllers. This project argues for a different approach where mathematically unambiguous, system-level behavioral specifications expressed in temporal logic are used to guide deep reinforcement learning algorithms to train neural network-based controllers. It allows reasoning about the safety of learning-based control through scalable methods for formal verification of the trained controllers against the given specifications. To address lack of explainability of neural controllers, this project devises new techniques to distill the neural-network-controlled autonomous system into human-interpretable symbolic automata. The project blends methods from statistical learning, control theory, optimization, and formal methods to give deterministic or probabilistic guarantees on the safe behavior of autonomous systems. It integrates education and research through new graduate courses on verifiable reinforcement learning. The investigator will broadly disseminate the scientific outcomes of the project through technology transfer to industrial partners and through publications at top research conferences and journals. The expected societal impact is improved safety and explainable control for future autonomous cyber-physical systems in various application domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来,像人类驾驶的汽车这样的非自动系统被自动驾驶汽车取代,现在已经触手可及。这种人力资源的减少是有代价的:在现有的系统中,人类操作员通过他们的行动隐含地定义高层次的系统目标;自主系统缺乏这种指导。流行的自主设计技术,如基于深度强化学习的设计技术,可以从用户指定的、基于状态的奖励函数或用户提供的演示中获得这种指导。不幸的是,这种技术通常不能保证训练过的控制器的安全行为。该项目提出了一种不同的方法,即使用时间逻辑表达的数学上明确的系统级行为规范来指导深度强化学习算法来训练基于神经网络的控制器。它允许通过可扩展的方法来根据给定的规范对训练过的控制器进行正式验证,从而推理基于学习的控制的安全性。为了解决神经控制器缺乏可解释性的问题,本项目设计了新的技术,将神经网络控制的自治系统提炼成人类可解释的符号自动机。该项目融合了统计学习、控制理论、优化和形式化方法的方法,为自治系统的安全行为提供确定性或概率保证。它通过可验证强化学习的新研究生课程整合了教育和研究。研究者将通过向工业伙伴转让技术以及在顶级研究会议和期刊上发表文章,广泛传播该项目的科学成果。预期的社会影响是在各种应用领域中提高未来自主网络物理系统的安全性和可解释的控制。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Performance Graphs From Demonstrations via Task-Based Evaluations
- DOI:10.1109/lra.2022.3226072
- 发表时间:2022-04
- 期刊:
- 影响因子:5.2
- 作者:Aniruddh Gopinath Puranic;Jyotirmoy V. Deshmukh;S. Nikolaidis
- 通讯作者:Aniruddh Gopinath Puranic;Jyotirmoy V. Deshmukh;S. Nikolaidis
Learning From Demonstrations Using Signal Temporal Logic in Stochastic and Continuous Domains
- DOI:10.1109/lra.2021.3092676
- 发表时间:2021-10
- 期刊:
- 影响因子:5.2
- 作者:Aniruddh Gopinath Puranic;Jyotirmoy V. Deshmukh;S. Nikolaidis
- 通讯作者:Aniruddh Gopinath Puranic;Jyotirmoy V. Deshmukh;S. Nikolaidis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jyotirmoy Deshmukh其他文献
Jyotirmoy Deshmukh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jyotirmoy Deshmukh', 18)}}的其他基金
Collaborative Research: CPS: Medium: Spatio-Temporal Logics for Analyzing and Querying Perception Systems
合作研究:CPS:媒介:用于分析和查询感知系统的时空逻辑
- 批准号:
2039087 - 财政年份:2021
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
SHF: Small: Premonition: A Methodology for Predictive Monitoring with Probabilistic Guarantees
SHF:小:预感:具有概率保证的预测监测方法
- 批准号:
1910088 - 财政年份:2019
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
FMitF: A Novel Framework for Learning Formal Abstractions and Causal Relations from Temporal Behaviors
FMITF:从时间行为中学习形式抽象和因果关系的新框架
- 批准号:
1837131 - 财政年份:2018
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
相似海外基金
SHF: Medium: Scallop: A Neurosymbolic Programming Framework for Combining Logic with Deep Learning
SHF:Medium:Scallop:一种将逻辑与深度学习相结合的神经符号编程框架
- 批准号:
2313010 - 财政年份:2023
- 资助金额:
$ 55.54万 - 项目类别:
Continuing Grant
Research on the Logic of Regional Developments of Organic Agriculture: Analysis by the Function and Value Change Framework
有机农业区域发展逻辑研究:功能与价值变化框架分析
- 批准号:
18K05871 - 财政年份:2018
- 资助金额:
$ 55.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A coalgebraic framework for reductive logic and proof-search (ReLiC)
还原逻辑和证明搜索的联合代数框架 (ReLiC)
- 批准号:
EP/S013008/1 - 财政年份:2018
- 资助金额:
$ 55.54万 - 项目类别:
Research Grant
An Edition and a critical Commentary of Erhard Weigels Writings on logic, logistics and on the idea of mathesis within the Framework of an already begun complete Edition of his most important works.
艾哈德·韦格尔 (Erhard Weigel) 关于逻辑、逻辑学和数学思想的著作的一个版本和批判性评论,是在他最重要的作品的完整版本的框架内完成的。
- 批准号:
333256317 - 财政年份:2017
- 资助金额:
$ 55.54万 - 项目类别:
Research Grants
Dynamical systems with random influences mixing logic and physics: a framework enabling control engineers to design for resilient autonomy
具有随机影响的混合逻辑和物理的动力系统:使控制工程师能够设计弹性自治的框架
- 批准号:
1508757 - 财政年份:2015
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
SHF: Small: A Hierarchical Symbolic Framework to Verify Logic, Timing, and Probabilistic Properties of Computing Systems
SHF:小型:用于验证计算系统的逻辑、时序和概率属性的分层符号框架
- 批准号:
1442586 - 财政年份:2014
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
A Framework for Logic based Information Integration and Knowledge Discovery for Prospect Prediction and Rating
用于前景预测和评级的基于逻辑的信息集成和知识发现框架
- 批准号:
468962-2014 - 财政年份:2014
- 资助金额:
$ 55.54万 - 项目类别:
Engage Grants Program
The Logic of the Modern Western Theory of Ideas: Its Naturalistic Framework and Destructive Dynamics
现代西方观念论的逻辑:其自然主义框架和破坏性动力
- 批准号:
25370015 - 财政年份:2013
- 资助金额:
$ 55.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: A Logic-Based Security Framework for Wired and Mobile Perimeter
EAGER:基于逻辑的有线和移动周边安全框架
- 批准号:
1347958 - 财政年份:2013
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
Quasi-subtractive varieties: a unified framework for substructural, modal and quantum logic
准减法簇:子结构、模态和量子逻辑的统一框架
- 批准号:
FT100100952 - 财政年份:2011
- 资助金额:
$ 55.54万 - 项目类别:
ARC Future Fellowships