Dynamical systems with random influences mixing logic and physics: a framework enabling control engineers to design for resilient autonomy
具有随机影响的混合逻辑和物理的动力系统:使控制工程师能够设计弹性自治的框架
基本信息
- 批准号:1508757
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop the mathematical tools necessary to describe and analyze dynamical systems that mix logic and physics while including random influences. These types of systems are sometimes called stochastic hybrid systems; where stochastic refers to the presence of random influences and hybrid refers to the mix of logic-based decision making and physical laws that determine the system evolution. These mathematical tools would be extremely useful, as they would provide a framework enabling control engineers to better design autonomous dynamical systems that are resilient in the face of uncertainty. The results of this proposal have the potential to impact researchers in a wide variety of application domains, where randomness interacts with worst-case effects and rigorous analysis tools are needed to certify desirable behavior in an engineered system. One possible application domain is the control of gene expression and other particular biological phenomena. Another application area is multi-agent resource allocation algorithms where agents invoke randomness in their allocation strategies to guarantee robustness to malicious agents in the network. Indeed, stochastic hybrid systems can be used to model complicated biological systems, financial systems, resource allocation systems, and traffic management systems, to name just a few. All of the results developed through this proposal will be published in the leading conference venues and journals, to provide avenues for the transition of the work to applications. Beyond contributions to the scientific literature, the proposed work will add to the existing graduate curriculum on stochastic and hybrid dynamical systems. Graduate students will be trained through direct financial support, but a broader group of students will be educated through teaching materials and a course that will be developed around the produced breakthroughs. These students include graduate students in all areas of engineering. To reach students broadly, the PI envisions a graduate textbook on stochastic hybrid systems emerging from this work, to complement the recent book on non-stochastic hybrid systems. The work will spawn collaboration with international researchers, and will enhance student exchange programs with several international universities. The research developments will be applied to areas that are important to the broad population. Moreover, the PI will use this opportunity to consider how to expose freshman engineering students to a broad range of dynamical systems principles. This effort will follow up the previous experience teaching a freshman seminar, to engineering and non-engineering students, on the application of optimization principles to real-world problems. The aim here aligns with the societal goal of keeping younger students engaged in topics related to science, technology, engineering, and mathematics.The specific technical objectives of the project start with establishing a mathematical framework and solution concept that is tractable yet general enough to be widely applicable. Tools from the field of variational analysis are crucial to this development. The objectives continue with the task of developing a wide range of analysis tools that can be used to certify appropriate behavior of an engineered stochastic hybrid system. The techniques will especially focus on a Lyapunov analysis for stability properties like asymptotic stability in probability and recurrence; other ideas that have been fruitful for non-stochastic hybrid systems also will be considered. Next, the aim is to establish strong sequential compactness results for the set of solutions to the models considered and, from these results, establish an invariance principle and converse Lyapunov theorems. These results would parallel recent, very useful results for non-stochastic hybrid systems. The final task is to begin to show explicitly how the developed framework and analysis tools can be used to engineer advanced, resilient, autonomous control systems.
该项目的目标是开发描述和分析混合逻辑和物理同时包含随机影响的动力系统所需的数学工具。 这些类型的系统有时称为随机混合系统;其中随机是指随机影响的存在,混合是指基于逻辑的决策和决定系统演化的物理定律的混合。 这些数学工具将非常有用,因为它们将提供一个框架,使控制工程师能够更好地设计面对不确定性时具有弹性的自主动力系统。 该提案的结果有可能影响各种应用领域的研究人员,其中随机性与最坏情况的影响相互作用,需要严格的分析工具来证明工程系统中的理想行为。一种可能的应用领域是基因表达和其他特定生物现象的控制。另一个应用领域是多代理资源分配算法,其中代理在其分配策略中调用随机性,以保证网络中恶意代理的稳健性。 事实上,随机混合系统可用于对复杂的生物系统、金融系统、资源分配系统和交通管理系统进行建模,仅举几例。通过该提案得出的所有结果都将在领先的会议场所和期刊上发表,为工作向应用的过渡提供途径。 除了对科学文献的贡献之外,拟议的工作还将添加到现有的随机和混合动力系统研究生课程中。研究生将通过直接的财政支持接受培训,但更广泛的学生群体将通过教材和围绕所取得的突破开发的课程接受教育。这些学生包括所有工程领域的研究生。 为了更广泛地接触学生,PI 设想从这项工作中出现一本关于随机混合系统的研究生教科书,以补充最近关于非随机混合系统的书。这项工作将催生与国际研究人员的合作,并将加强与几所国际大学的学生交换项目。研究进展将应用于对广大民众重要的领域。此外,PI 将利用这个机会考虑如何让工程专业的新生了解广泛的动力系统原理。这项工作将延续之前向工程和非工程学生举办的新生研讨会,讲述优化原理在实际问题中的应用。这里的目标与让年轻学生参与科学、技术、工程和数学相关主题的社会目标是一致的。该项目的具体技术目标首先是建立一个易于处理但足够通用、可广泛应用的数学框架和解决方案概念。 变分分析领域的工具对于这一发展至关重要。 目标继续是开发各种分析工具,这些工具可用于验证工程随机混合系统的适当行为。 这些技术将特别关注稳定性特性的李亚普诺夫分析,例如概率和递归的渐近稳定性;还将考虑对非随机混合系统卓有成效的其他想法。 接下来,目标是为所考虑的模型的解集建立强顺序紧性结果,并根据这些结果建立不变性原理并逆李雅普诺夫定理。 这些结果与非随机混合系统最近非常有用的结果相似。 最后的任务是开始明确展示如何使用开发的框架和分析工具来设计先进的、有弹性的、自主的控制系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Teel其他文献
Integral Characterizations of Set UGAS of Differential Inclusions and Applications
- DOI:
10.1016/s1474-6670(17)35317-x - 发表时间:
2001-07-01 - 期刊:
- 影响因子:
- 作者:
Andrew Teel;Elena Panteley;Antonio Loría - 通讯作者:
Antonio Loría
Andrew Teel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Teel', 18)}}的其他基金
Further advances in stability analysis for hybrid adversarial Markov decision processes
混合对抗马尔可夫决策过程稳定性分析的进一步进展
- 批准号:
1232035 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Stability theory for set-valued stochastic hybrid systems
集值随机混合系统的稳定性理论
- 批准号:
0925637 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Computational Sampled-Data Nonlinear Control
计算采样数据非线性控制
- 批准号:
0324679 - 财政年份:2003
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Analysis Tools and Control Algorithms for Nonlinear Dynamical Systems
非线性动力系统的分析工具和控制算法
- 批准号:
9988813 - 财政年份:2000
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Analysis and Synthesis of Nonlinear Time-Varying Control Systems
美法合作研究:非线性时变控制系统的分析与综合
- 批准号:
9910030 - 财政年份:2000
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: Research on input-output methods for nonlinear control design; Education into the next century
职业:非线性控制设计输入输出方法研究;
- 批准号:
9896140 - 财政年份:1997
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: Research on input-output methods for nonlinear control design; Education into the next century
职业:非线性控制设计输入输出方法研究;
- 批准号:
9502034 - 财政年份:1995
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
RESEARCH INITIATION AWARD: Nonlinear Control Tools and Applications
研究启动奖:非线性控制工具和应用
- 批准号:
9309523 - 财政年份:1993
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
新型非对称频分双工系统及其射频关键技术研究
- 批准号:61102055
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
超高频超宽带系统射频基带补偿理论与技术的研究
- 批准号:61001097
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相关信道环境下MIMO-OFDM系统的空时码设计问题研究
- 批准号:60572117
- 批准年份:2005
- 资助金额:6.0 万元
- 项目类别:面上项目
相似海外基金
Non-Stationary Random Dynamical Systems and Applications
非平稳随机动力系统和应用
- 批准号:
2247966 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Validated numerics for Iterated Function Schemes, Dynamical Systems and Random Walks
迭代函数方案、动力系统和随机游走的经过验证的数值
- 批准号:
EP/W033917/1 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Research Grant
What predictions can I trust? Stability of chaotic random dynamical systems
我可以相信哪些预测?
- 批准号:
DP220102216 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Projects
Exit Time from the perspective of random dynamical systems and its application in stochastic resonance
随机动力系统视角下的退出时间及其在随机共振中的应用
- 批准号:
2752048 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Studentship
Bifurcations of random dynamical systems with bounded noise
具有有限噪声的随机动力系统的分岔
- 批准号:
EP/W009455/1 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Long time and transient behaviors of dynamical systems under deterministic and random perturbations
确定性和随机扰动下动力系统的长时间和瞬态行为
- 批准号:
RGPIN-2020-04451 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
N-point motions in Random Dynamical Systems
随机动力系统中的 N 点运动
- 批准号:
2602126 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Studentship
Stochastic analysis of intermittent maps and random dynamical systems via operator renewal theory
通过算子更新理论对间歇映射和随机动力系统进行随机分析
- 批准号:
21J00015 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Long time and transient behaviors of dynamical systems under deterministic and random perturbations
确定性和随机扰动下动力系统的长时间和瞬态行为
- 批准号:
RGPIN-2020-04451 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Study of dynamical systems of random relaxed Newton methods
随机松弛牛顿法动力系统研究
- 批准号:
21K20323 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




