CAREER: Understanding Nanoscale Interactions at Single-Particle and Single-Cell Levels

职业:了解单粒子和单细胞水平的纳米级相互作用

基本信息

  • 批准号:
    2048130
  • 负责人:
  • 金额:
    $ 76.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Nanoscale interactions determine nanoparticle safety and effectiveness in environmental, biological, and medical applications. To better exploit the potential of nanoparticles for these applications, a fundamental understanding of nanoscale interactions is required. This project will provide a quantitative understanding of nanoscale interactions at single particle and single cell levels by systematically studying inter-nanoparticle interactions, nanoparticle-cell interactions, and nanoparticle intracellular transport using unique bio-analytical methods. The potential scientific impact of this project will be in providing engineering guidelines for the design of safer and more effective nanoparticles made possible by a deeper quantitative understanding, and thus better control, of nanoscale interactions. Core educational impacts are based on bionanotechnology engagement of Native American and other underserved high school juniors in rural Southwest Oklahoma via year-round research-integrated education and outreach activities to inspire successful careers in science and engineering.The safe and effective use of nanoparticles in environmental, biological, and medical applications requires a better quantitative understanding of nanoparticle interactions with biological media and systems. This project will establish a new research paradigm to systematically study the mechanisms and kinetics of nanoscale interactions based on unique label-free and in situ quantitative bio-analytical methods at single particle and single cell levels via three research objectives. In Objective 1, inter-nanoparticle interactions will be quantified. Nanoparticle-cell interactions will be assessed in Objective 2. In Objective 3, nanoparticle intracellular transport will be determined with unique spatiotemporal resolution. These quantitative and mechanistic studies have the potential to inform the engineering of nanoparticles that efficiently overcome biological barriers for safe and effective biological and medical applications. This research will additionally enable a better quantitative and mechanistic understanding of nanoparticle environmental interactions and associated ecological effects. The scientific vision will be integrated with the engagement of Native American and other underserved high school juniors in bionanotechnology via a unique program termed Bionanotechnology Engagement for Native Americans in Oklahoma (BE4NANO). In partnership with local Native American tribes, public high schools, a technology center, and university allies, there will be two primary educational objectives to (i) engage these students in bionanotechnology via year-round activities, and to (ii) create academic and social support networks for these students within the institution. Through BE4NANO, high school students will be inspired to consider careers as scientists and engineers. In addition, the PI will provide support and encouragement to maximize success, thereby increasing the number of Native American students in college science, technology, engineering, and mathematics programs and retaining these students in their programs of study. Students will be empowered to engage and inspire the next generation of BE4NANO participants within their underserved communities, creating a positive and inclusive feedback loop to sustain this holistic research-integrated education and outreach program.This project is jointly funded by the Nanoscale Interactions Program within the Chemical, Bioengineering, Environmental and Transport Systems (CBET) Division and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米尺度的相互作用决定了纳米粒子在环境、生物和医学应用中的安全性和有效性。为了更好地开发纳米颗粒在这些应用中的潜力,需要对纳米尺度的相互作用有一个基本的了解。该项目将通过使用独特的生物分析方法系统地研究纳米颗粒之间的相互作用、纳米颗粒-细胞相互作用和纳米颗粒在细胞内的运输,从而提供对单个颗粒和单细胞水平上的纳米尺度相互作用的定量理解。该项目的潜在科学影响将是为设计更安全、更有效的纳米颗粒提供工程指导方针,通过对纳米尺度相互作用的更深入的定量理解,从而更好地控制。教育的核心影响基于美国原住民和俄克拉何马州西南部农村地区其他未得到充分服务的高三学生通过全年研究整合教育和推广活动来参与生物技术,以激励他们在科学和工程领域取得成功。在环境、生物和医疗应用中安全有效地使用纳米颗粒需要更好地定量了解纳米颗粒与生物介质和系统的相互作用。该项目将建立一个新的研究范式,通过三个研究目标,基于独特的无标记和原位定量生物分析方法,在单粒子和单细胞水平上系统地研究纳米级相互作用的机制和动力学。在目标1中,纳米粒子之间的相互作用将被量化。目标2将评估纳米颗粒与细胞之间的相互作用。目标3将以独特的时空分辨率确定纳米颗粒在细胞内的传输。这些定量的和机械的研究有可能为纳米颗粒的工程提供信息,这些纳米颗粒可以有效地克服生物障碍,实现安全和有效的生物和医疗应用。这项研究还将使人们能够更好地从定量和机理上了解纳米粒子与环境的相互作用和相关的生态效应。这一科学愿景将与美国原住民和其他未得到充分服务的高三学生通过一项名为俄克拉荷马州美洲原住民生物技术参与(BE4NANO)的独特计划相结合。与当地美洲原住民部落、公立高中、技术中心和大学盟友合作,将有两个主要教育目标:(I)通过全年活动让这些学生参与生物科技,以及(Ii)在学校内为这些学生创建学术和社会支持网络。通过BE4NANO,高中生将受到启发,考虑成为科学家和工程师。此外,PI将提供支持和鼓励,以最大限度地取得成功,从而增加大学科学、技术、工程和数学专业的美国原住民学生数量,并将这些学生保留在他们的学习计划中。该项目由化学、生物工程、环境和运输系统(CBET)分部内的纳米尺度互动计划和既定的激励竞争研究计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Disabling partners in crime: Gold nanoparticles disrupt multicellular communications within the tumor microenvironment to inhibit ovarian tumor aggressiveness.
  • DOI:
    10.1016/j.mattod.2022.01.025
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    24.2
  • 作者:
    Zhang, Yushan;Elechalawar, Chandra Kumar;Yang, Wen;Frickenstein, Alex N.;Asfa, Sima;Fung, Kar-Ming;Murphy, Brennah N.;Dwivedi, Shailendra K.;Rao, Geeta;Dey, Anindya;Wilhelm, Stefan;Bhattacharya, Resham;Mukherjee, Priyabrata
  • 通讯作者:
    Mukherjee, Priyabrata
Quantifying Chemical Composition and Reaction Kinetics of Individual Colloidally Dispersed Nanoparticles
  • DOI:
    10.1021/acs.nanolett.1c03752
  • 发表时间:
    2021-12-28
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Donahue, Nathan D.;Kanapilly, Sandy;Wilhelm, Stefan
  • 通讯作者:
    Wilhelm, Stefan
Controlling Nanoparticle Uptake in Innate Immune Cells with Heparosan Polysaccharides.
用肝素多糖控制先天免疫细胞中的纳米颗粒摄取。
  • DOI:
    10.1021/acs.nanolett.2c02226
  • 发表时间:
    2022-09-14
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Yang, Wen;Frickenstein, Alex N.;Sheth, Vinit;Holden, Alyssa;Mettenbrink, Evan M.;Wang, Lin;Woodward, Alexis A.;Joo, Bryan S.;Butterfield, Sarah K.;Donahue, Nathan D.;Green, Dixy E.;Thomas, Abigail G.;Harcourt, Tekena;Young, Hamilton;Tang, Mulan;Malik, Zain A.;Harrison, Roger G.;Mukherjee, Priyabrata;DeAngelis, Paul L.;Wilhelm, Stefan
  • 通讯作者:
    Wilhelm, Stefan
Nanoparticle Surface Engineering with Heparosan Polysaccharide Reduces Serum Protein Adsorption and Enhances Cellular Uptake.
  • DOI:
    10.1021/acs.nanolett.2c00349
  • 发表时间:
    2022-03-09
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Yang, Wen;Wang, Lin;Fang, Mulin;Sheth, Vinit;Zhang, Yushan;Holden, Alyssa M.;Donahue, Nathan D.;Green, Dixy E.;Frickenstein, Alex N.;Mettenbrink, Evan M.;Schwemley, Tyler A.;Francek, Emmy R.;Haddad, Majood;Hossen, Md Nazir;Mukherjee, Shirsha;Wu, Si;DeAngelis, Paul L.;Wilhelm, Stefan
  • 通讯作者:
    Wilhelm, Stefan
Quantifying Intracellular Nanoparticle Distributions with Three-Dimensional Super-Resolution Microscopy.
  • DOI:
    10.1021/acsnano.2c12808
  • 发表时间:
    2023-05-09
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Sheth, Vinit;Chen, Xuxin;Mettenbrink, Evan M.;Yang, Wen;Jones, Meredith A.;M'Saad, Ons;Thomas, Abigail G.;Newport, Rylee S.;Francek, Emmy;Wang, Lin;Frickenstein, Alex N.;Donahue, Nathan D.;Holden, Alyssa;Mjema, Nathan F.;Green, Dixy E.;DeAngelis, Paul L.;Bewersdorf, Joerg;Wilhelm, Stefan
  • 通讯作者:
    Wilhelm, Stefan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stefan Wilhelm其他文献

High-throughput single-cell analysis of nanoparticle-cell interactions
纳米粒子-细胞相互作用的高通量单细胞分析
  • DOI:
    10.1016/j.trac.2023.117172
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    12.000
  • 作者:
    Majood Haddad;Alex N. Frickenstein;Stefan Wilhelm
  • 通讯作者:
    Stefan Wilhelm
News and noise in crime politics: The role of announcements and risk attitudes
犯罪政治中的新闻和噪音:公告和风险态度的作用
  • DOI:
    10.1016/j.econmod.2023.106560
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Wolfgang Maennig;Stefan Wilhelm
  • 通讯作者:
    Stefan Wilhelm
Opto-chemical micro-capillary clocks
光化学微毛细管钟
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stefan Wilhelm;O. Wolfbeis
  • 通讯作者:
    O. Wolfbeis
Knowledge marketing: How can strategic customers be utilised for knowledge marketing in knowledge-intensive SMEs?
知识营销:知识密集型中小企业如何利用战略客户进行知识营销?
  • DOI:
    10.1057/s41275-016-0039-1
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gregor Diehr;Stefan Wilhelm
  • 通讯作者:
    Stefan Wilhelm
Confocal Laser Scanning Microscopy
  • DOI:
    10.1007/978-90-481-9751-4_34
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stefan Wilhelm
  • 通讯作者:
    Stefan Wilhelm

Stefan Wilhelm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Understanding and controlling the sintering of metal powders with nanoscale additives
职业:了解和控制纳米级添加剂金属粉末的烧结
  • 批准号:
    2340688
  • 财政年份:
    2024
  • 资助金额:
    $ 76.17万
  • 项目类别:
    Continuing Grant
Understanding the Heterogeneity of Nanoscale Extracellular Vesicles, Exomeres, and Supermeres using Next Generation Optical Nanotweezers
使用下一代光学纳米镊子了解纳米级细胞外囊泡、外泌体和 Supermeres 的异质性
  • 批准号:
    10714221
  • 财政年份:
    2023
  • 资助金额:
    $ 76.17万
  • 项目类别:
CAREER: Understanding Nanoscale Radiative Transport in Multi-Body Systems
职业:了解多体系统中的纳米级辐射传输
  • 批准号:
    2237003
  • 财政年份:
    2023
  • 资助金额:
    $ 76.17万
  • 项目类别:
    Continuing Grant
CAREER: Mechanistic understanding of the nanoscale interactions of structurally tunable 3D assemblies of MXenes-polyelectrolytes
职业:对 MXenes-聚电解质结构可调 3D 组件的纳米级相互作用的机理理解
  • 批准号:
    2238908
  • 财政年份:
    2023
  • 资助金额:
    $ 76.17万
  • 项目类别:
    Standard Grant
Understanding materials at the nanoscale for improved thermoelectric performance
了解纳米级材料以提高热电性能
  • 批准号:
    2826006
  • 财政年份:
    2023
  • 资助金额:
    $ 76.17万
  • 项目类别:
    Studentship
RII Track-4: NSF: Understanding the Nanoscale Incommensurate Modulated Structure in the Titanium Alloys
RII Track-4:NSF:了解钛合金中的纳米级不相称调制结构
  • 批准号:
    2229724
  • 财政年份:
    2023
  • 资助金额:
    $ 76.17万
  • 项目类别:
    Standard Grant
Understanding the role of water molecule diffusion in nanoscale heat transfer for improving thermal energy output of thermochemical heat storage material
了解水分子扩散在纳米级传热中的作用,以提高热化学储热材料的热能输出
  • 批准号:
    23K13818
  • 财政年份:
    2023
  • 资助金额:
    $ 76.17万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Materials on the edge: nanoscale understanding and control of interfacial and interaction-driven electronic properties of materials
边缘材料:对材料界面和相互作用驱动的电子特性的纳米级理解和控制
  • 批准号:
    RGPIN-2018-04271
  • 财政年份:
    2022
  • 资助金额:
    $ 76.17万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding Amyloid Post-Translational Modification at the Nanoscale
了解纳米级淀粉样蛋白翻译后修饰
  • 批准号:
    2741540
  • 财政年份:
    2022
  • 资助金额:
    $ 76.17万
  • 项目类别:
    Studentship
Understanding the Nanoscale Interactions of Surface Plasmon Mediated Semiconductor Surfaces with Water and Light for Renewable Energy Harvesting and Conversion
了解表面等离子体介导的半导体表面与水和光的纳米级相互作用,用于可再生能源收集和转换
  • 批准号:
    2113505
  • 财政年份:
    2022
  • 资助金额:
    $ 76.17万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了