CAREER: Understanding Nanoscale Radiative Transport in Multi-Body Systems

职业:了解多体系统中的纳米级辐射传输

基本信息

  • 批准号:
    2237003
  • 负责人:
  • 金额:
    $ 62.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Thermal management of nanodevices requires a solid understanding of radiative heat transfer in reduced dimensions. To date, experiments involving radiative heat transfer have been limited by a focus on two-body systems. This CAREER program will explore the potential of systems containing more than two objects (i.e., multi-body systems) to lead to new physical and transport behaviors and, as a result, enable new applications in domains of national importance such as aerospace electronics, energy conversion technology, and information processing. To create these new technologies, it is essential to experimentally study and understand nanoscale radiative heat transfer between multiple objects and explore its use for improving heat exchange and thermal control. Thus, a primary outcome of this research will be a novel technique that enables the study of nanoscale radiative heat transfer among multiple objects. In addition to providing the fundamental knowledge necessary to advance thermal control at the nanoscale, this program will implement an innovative educational platform that promotes practical workforce development in academia by bridging the gap between academic work and industrial problems and stimulates curiosity among K-12 students in exploring engineering careers. This CAREER program will apply the physics of radiative transport in multi-bodies to solve thermal control problems in nanodevices. Specifically, this research will experimentally uncover the governing physics that drive electromagnetic waves-matter interactions in multi-body systems to identify the contributing factors in near-field radiative heat transfer (NFRHT). This work will provide new knowledge critical to the development of next-generation nanodevices by: (1) understanding the effect of structural factors on NFRHT in multi-bodies and (2) elucidating the role of multi-body physics in NFRHT for active thermal management. Significant structural and material factors in the spatial confinement of evanescent photons between multi-bodies will be identified through precision heat transfer measurements. Findings will provide in-depth understanding on how multiple interactive objects within micro/nano-dimensions impact radiative transport mechanisms—knowledge that will have far-reaching implications for advancing the thermal management of state-of-the-art high-power systems in industrial and technological applications. This research is integrated with education objectives to: (1) create an Academic-Industry Bridge (AIB) initiative for undergraduate and graduate students and (2) extend the AIB initiative to include an interactive platform for hands-on research projects for K- 12 students. Collaborations with Navajo Technical University and the University of Texas Rio Grande Valley will ensure engagement with diverse audiences.This project is jointly funded by the Thermal Transport Processes Program in the Chemical, Bioengineering, Environmental and Transport Systems (CBE) Division of the Engineering Directorate, and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米器件的热管理需要对降维中的辐射换热有扎实的了解。到目前为止,涉及辐射换热的实验一直受限于对二体系统的关注。这一职业计划将探索包含两个以上物体的系统(即多体系统)的潜力,以导致新的物理和运输行为,并因此在航空航天电子、能源转换技术和信息处理等具有国家重要性的领域实现新的应用。为了创造这些新技术,必须从实验上研究和了解多个物体之间的纳米级辐射换热,并探索其在改善换热和热控制方面的用途。因此,这项研究的主要成果将是一种新的技术,能够研究多个物体之间的纳米级辐射热传递。除了提供在纳米尺度推进热控制所需的基本知识外,该项目还将实施一个创新的教育平台,通过弥合学术工作和工业问题之间的差距来促进学术界的实际劳动力发展,并激发K-12学生探索工程职业的好奇心。这项职业计划将应用多体辐射传输的物理学来解决纳米设备中的热控制问题。具体地说,这项研究将在实验上揭示多体系统中驱动电磁波-物质相互作用的主导物理,以确定近场辐射热传输(NFRHT)的贡献因素。这项工作将通过以下两方面为下一代纳米器件的发展提供关键的新知识:(1)了解结构因素对多体NFRHT的影响;(2)阐明多体物理在NFRHT主动热管理中的作用。通过精确的热传递测量,将确定在多体之间消逝光子的空间限制中的重要结构和材料因素。这些发现将提供对微/纳米维度内的多个交互物体如何影响辐射传输机制的深入理解--这些知识将对推进工业和技术应用中最先进的大功率系统的热管理具有深远影响。这项研究与教育目标相结合:(1)为本科生和研究生创建学术-产业桥梁(AIB)倡议;(2)扩展AIB倡议,为K-12学生提供动手研究项目的互动平台。与纳瓦霍技术大学和德克萨斯大学里奥格兰德山谷的合作将确保与不同的受众接触。该项目由工程局化学、生物工程、环境和运输系统(CBE)部门的热传输过程计划和既定的激励竞争研究计划(EPSCoR)联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohammad Ghashami其他文献

Mohammad Ghashami的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Understanding and controlling the sintering of metal powders with nanoscale additives
职业:了解和控制纳米级添加剂金属粉末的烧结
  • 批准号:
    2340688
  • 财政年份:
    2024
  • 资助金额:
    $ 62.97万
  • 项目类别:
    Continuing Grant
Understanding the Heterogeneity of Nanoscale Extracellular Vesicles, Exomeres, and Supermeres using Next Generation Optical Nanotweezers
使用下一代光学纳米镊子了解纳米级细胞外囊泡、外泌体和 Supermeres 的异质性
  • 批准号:
    10714221
  • 财政年份:
    2023
  • 资助金额:
    $ 62.97万
  • 项目类别:
CAREER: Mechanistic understanding of the nanoscale interactions of structurally tunable 3D assemblies of MXenes-polyelectrolytes
职业:对 MXenes-聚电解质结构可调 3D 组件的纳米级相互作用的机理理解
  • 批准号:
    2238908
  • 财政年份:
    2023
  • 资助金额:
    $ 62.97万
  • 项目类别:
    Standard Grant
Understanding materials at the nanoscale for improved thermoelectric performance
了解纳米级材料以提高热电性能
  • 批准号:
    2826006
  • 财政年份:
    2023
  • 资助金额:
    $ 62.97万
  • 项目类别:
    Studentship
RII Track-4: NSF: Understanding the Nanoscale Incommensurate Modulated Structure in the Titanium Alloys
RII Track-4:NSF:了解钛合金中的纳米级不相称调制结构
  • 批准号:
    2229724
  • 财政年份:
    2023
  • 资助金额:
    $ 62.97万
  • 项目类别:
    Standard Grant
Understanding the role of water molecule diffusion in nanoscale heat transfer for improving thermal energy output of thermochemical heat storage material
了解水分子扩散在纳米级传热中的作用,以提高热化学储热材料的热能输出
  • 批准号:
    23K13818
  • 财政年份:
    2023
  • 资助金额:
    $ 62.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Materials on the edge: nanoscale understanding and control of interfacial and interaction-driven electronic properties of materials
边缘材料:对材料界面和相互作用驱动的电子特性的纳米级理解和控制
  • 批准号:
    RGPIN-2018-04271
  • 财政年份:
    2022
  • 资助金额:
    $ 62.97万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding the Nanoscale Interactions of Surface Plasmon Mediated Semiconductor Surfaces with Water and Light for Renewable Energy Harvesting and Conversion
了解表面等离子体介导的半导体表面与水和光的纳米级相互作用,用于可再生能源收集和转换
  • 批准号:
    2113505
  • 财政年份:
    2022
  • 资助金额:
    $ 62.97万
  • 项目类别:
    Continuing Grant
Understanding Amyloid Post-Translational Modification at the Nanoscale
了解纳米级淀粉样蛋白翻译后修饰
  • 批准号:
    2741540
  • 财政年份:
    2022
  • 资助金额:
    $ 62.97万
  • 项目类别:
    Studentship
Lipid-polymer membranes: understanding ion transport through hybrid materials at the nanoscale
脂质聚合物膜:了解纳米级混合材料中的离子传输
  • 批准号:
    2219305
  • 财政年份:
    2022
  • 资助金额:
    $ 62.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了