CAREER: The Arithmetic of Fields and the Complexity of Algebraic Structures

职业:域算术和代数结构的复杂性

基本信息

  • 批准号:
    2049180
  • 负责人:
  • 金额:
    $ 0.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-31 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

The PI will investigate a number of problems, using homotopy aspects of arithmetic geometry, that may be thought of as generalizations of the period-index problem for the Brauer group, the u-invariant problem for quadratic forms, and the Hasse principle for a quadratic form over a number field. The project will focus on the interaction of field arithmetic and the complexity of algebraic structures, such as quadratic forms, Brauer groups, linear algebraic groups and homogeneous varieties. The project represents a set of techniques and experiments designed to capitalize on the new topological perspective in the study of algebraic structures. It will aim to support and further the interactions of these areas with arithmetic algebraic geometry, algebraic topology and the algebraic geometry of stacks and moduli.The relevance of these topics, rooted in algebra within pure mathematics, is exhibited by their connections to a wide range of other subjects in recent years. Besides their many ties to other branches of mathematics, the algebraic structures at the core of this proposal have also found applications within diverse areas from theoretical physics to wireless communications. The research component of this project will seek to capitalize on and enrich our understanding of the many connections to other areas of study in order to gain more leverage in understanding these fundamental and important algebraic structures. The project's outreach components include funding conferences aimed at establishing a community inclusive of graduate students and young researchers, undergraduate colloquium aimed at increasing interest in mathematics, and facilitating a mentoring program for high school students in northeast Georgia interested in mathematics. It will also pursue strategies towards improving the mentoring and retention of graduate students in mathematics.
PI将研究一些问题,使用算术几何的同伦方面,可以被认为是Brauer群的周期指数问题,二次型的u-不变问题和数域上二次型的Hasse原理的推广。该项目将侧重于领域算术的相互作用和代数结构的复杂性,如二次型,布劳尔群,线性代数群和齐次簇。该项目代表了一套技术和实验,旨在利用新的拓扑角度研究代数结构。它的目的是支持和促进这些领域的相互作用与算术代数几何,代数拓扑和代数几何的堆栈和moduli.The相关性,这些主题,植根于纯数学代数,是展示了他们的连接到广泛的其他科目在最近几年。除了与其他数学分支的许多联系之外,这个提议的核心代数结构也在从理论物理到无线通信的不同领域中找到了应用。 该项目的研究部分将寻求利用和丰富我们对与其他研究领域的许多联系的理解,以便在理解这些基本和重要的代数结构方面获得更多的杠杆作用。 该项目的推广部分包括资助会议,旨在建立一个社区,包括研究生和年轻的研究人员,本科生座谈会,旨在提高对数学的兴趣,并促进辅导计划,高中学生在东北部格鲁吉亚感兴趣的数学。它还将寻求改善数学研究生的指导和保留的战略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Krashen其他文献

Conformal Blocks on Smoothings via Mode Transition Algebras
  • DOI:
    10.1007/s00220-025-05237-1
  • 发表时间:
    2025-05-07
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Chiara Damiolini;Angela Gibney;Daniel Krashen
  • 通讯作者:
    Daniel Krashen
Brauertsch fields
布劳尔奇领域
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Krashen;Max Lieblich;Mi
  • 通讯作者:
    Mi

Daniel Krashen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Krashen', 18)}}的其他基金

Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
  • 批准号:
    2401018
  • 财政年份:
    2023
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Continuing Grant
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
  • 批准号:
    2001109
  • 财政年份:
    2019
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
  • 批准号:
    1902144
  • 财政年份:
    2019
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Continuing Grant
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
  • 批准号:
    1463901
  • 财政年份:
    2015
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
CAREER: The Arithmetic of Fields and the Complexity of Algebraic Structures
职业:域算术和代数结构的复杂性
  • 批准号:
    1151252
  • 财政年份:
    2012
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Continuing Grant
The structure of invariants in algebra and geometry
代数和几何中不变量的结构
  • 批准号:
    1007462
  • 财政年份:
    2010
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant

相似海外基金

Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
  • 批准号:
    2401018
  • 财政年份:
    2023
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Continuing Grant
Arithmetic of Kummer-faithful fields
Kummer 忠实域的算术
  • 批准号:
    23K03068
  • 财政年份:
    2023
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic Properties of Global Fields
全局字段的算术属性
  • 批准号:
    RGPIN-2020-03915
  • 财政年份:
    2022
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
  • 批准号:
    RGPIN-2020-06146
  • 财政年份:
    2022
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Discovery Grants Program - Individual
Workshop on Arithmetic and Topology Over Global Fields
全球域算术与拓扑研讨会
  • 批准号:
    2232776
  • 财政年份:
    2022
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
The Algebra and Arithmetic of Splitting Fields
分裂域的代数和算术
  • 批准号:
    2200845
  • 财政年份:
    2022
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
Arithmetic Geometry and Dynamics over Finite Fields
有限域上的算术几何和动力学
  • 批准号:
    557298-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Postdoctoral Fellowships
Arithmetic Properties of Global Fields
全局字段的算术属性
  • 批准号:
    RGPIN-2020-03915
  • 财政年份:
    2021
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
  • 批准号:
    RGPIN-2020-06146
  • 财政年份:
    2021
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Geometry and Dynamics over Finite Fields
有限域上的算术几何和动力学
  • 批准号:
    557298-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了