FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
基本信息
- 批准号:2001109
- 负责人:
- 金额:$ 2.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-31 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The interplay between number theory and algebraic geometry has been a source of inspiration in modern mathematics. Having led to the solution of a number of outstanding conjectures, such as Fermat's Last Theorem and the Mordell Conjecture, it continues to give rise to deep and important problems in algebra. Local-global principles are a central theme in this interplay of subjects, and many important outstanding problems can be expressed in terms of such principles. This project has the objective of understanding local-global principles and their obstructions, in contexts that are broader than those considered in number theory. The project will also support and enhance the training of graduate students and postdoctoral researchers through seminars, conferences and workshops, and mentoring activities.The Focused Research Group will focus on local-global principles for algebraic structures defined over function fields of curves over base fields such as p-adic fields, with a longer term goal of treating the case of function fields of curves over global fields. The obstructions to such local-global principles can often be formulated in terms of cohomology. Our project aims to study the finiteness of these obstructions and determine criteria for them to vanish. The resulting understanding will be applied to proving conjectures and solving open problems concerning algebraic structures such as quadratic forms and associative algebras. This will include situations that have been studied by many researchers but where solutions had previously seemed out of reach. Research methods will include field patching, cohomological methods including residues and duality, and approaches from geometry.
数论和代数几何之间的相互作用一直是现代数学的灵感来源。在导致解决了一些突出的问题,如费马大定理和莫德尔猜想,它继续引起深刻的和重要的问题,代数。地方-全球原则是这一主题相互作用的中心主题,许多重要的悬而未决的问题可以用这些原则来表达。该项目的目标是在比数论更广泛的背景下理解局部-全局原则及其障碍。该项目还将通过研讨会、会议和讲习班以及指导活动来支持和加强对研究生和博士后研究人员的培训。重点研究小组将专注于在基域上的曲线函数域(如p-adic域)上定义的代数结构的局部-全局原理,其长期目标是处理全局域上的曲线函数域的情况。这种局部-整体原理的障碍通常可以用上同调来表述。我们的项目旨在研究这些障碍物的有限性,并确定它们消失的标准。由此产生的理解将适用于证明命题和解决有关代数结构,如二次形式和结合代数的开放问题。这将包括许多研究人员已经研究过的情况,但以前似乎无法解决。研究方法将包括现场修补,上同调的方法,包括残留物和对偶,并从几何方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Krashen其他文献
Conformal Blocks on Smoothings via Mode Transition Algebras
- DOI:
10.1007/s00220-025-05237-1 - 发表时间:
2025-05-07 - 期刊:
- 影响因子:2.600
- 作者:
Chiara Damiolini;Angela Gibney;Daniel Krashen - 通讯作者:
Daniel Krashen
Daniel Krashen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Krashen', 18)}}的其他基金
Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
- 批准号:
2401018 - 财政年份:2023
- 资助金额:
$ 2.6万 - 项目类别:
Continuing Grant
CAREER: The Arithmetic of Fields and the Complexity of Algebraic Structures
职业:域算术和代数结构的复杂性
- 批准号:
2049180 - 财政年份:2019
- 资助金额:
$ 2.6万 - 项目类别:
Continuing Grant
Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
- 批准号:
1902144 - 财政年份:2019
- 资助金额:
$ 2.6万 - 项目类别:
Continuing Grant
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
- 批准号:
1463901 - 财政年份:2015
- 资助金额:
$ 2.6万 - 项目类别:
Standard Grant
CAREER: The Arithmetic of Fields and the Complexity of Algebraic Structures
职业:域算术和代数结构的复杂性
- 批准号:
1151252 - 财政年份:2012
- 资助金额:
$ 2.6万 - 项目类别:
Continuing Grant
The structure of invariants in algebra and geometry
代数和几何中不变量的结构
- 批准号:
1007462 - 财政年份:2010
- 资助金额:
$ 2.6万 - 项目类别:
Standard Grant
相似海外基金
Understanding the impact of capillary obstructions on brain angio-architecture and function
了解毛细血管阻塞对脑血管结构和功能的影响
- 批准号:
RGPIN-2019-06399 - 财政年份:2022
- 资助金额:
$ 2.6万 - 项目类别:
Discovery Grants Program - Individual
Evaluating Actions, Obstructions, and Reductions for Covers of Curves
评估曲线覆盖的动作、障碍和缩减
- 批准号:
2200418 - 财政年份:2022
- 资助金额:
$ 2.6万 - 项目类别:
Standard Grant
Dynamics Beyond Turbulence and Obstructions to Classification
超越湍流和分类障碍的动力学
- 批准号:
2154258 - 财政年份:2022
- 资助金额:
$ 2.6万 - 项目类别:
Continuing Grant
Topological obstructions in the control of partial differential equations
偏微分方程控制中的拓扑障碍
- 批准号:
RGPIN-2022-03832 - 财政年份:2022
- 资助金额:
$ 2.6万 - 项目类别:
Discovery Grants Program - Individual
Local-global principles: arithmetic statistics and obstructions
局部全局原则:算术统计和障碍
- 批准号:
EP/S004696/2 - 财政年份:2021
- 资助金额:
$ 2.6万 - 项目类别:
Research Grant
Understanding the impact of capillary obstructions on brain angio-architecture and function
了解毛细血管阻塞对脑血管结构和功能的影响
- 批准号:
RGPIN-2019-06399 - 财政年份:2021
- 资助金额:
$ 2.6万 - 项目类别:
Discovery Grants Program - Individual
Historic City Tolerance: evacuation simulation index considering simultaneous street obstructions
历史城市容忍度:考虑同时街道障碍物的疏散模拟指数
- 批准号:
20F40066 - 财政年份:2020
- 资助金额:
$ 2.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Railway Optical Detection and Obstructions-Tunnel & Station Monitoring
铁路光学探测与障碍物-隧道
- 批准号:
971753 - 财政年份:2020
- 资助金额:
$ 2.6万 - 项目类别:
Small Business Research Initiative
Understanding the impact of capillary obstructions on brain angio-architecture and function
了解毛细血管阻塞对脑血管结构和功能的影响
- 批准号:
RGPIN-2019-06399 - 财政年份:2020
- 资助金额:
$ 2.6万 - 项目类别:
Discovery Grants Program - Individual
Spin obstructions to metrics of positive scalar curvature on nonspin manifolds
非自旋流形上正标量曲率度量的自旋障碍
- 批准号:
441895604 - 财政年份:2020
- 资助金额:
$ 2.6万 - 项目类别:
Priority Programmes