Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
基本信息
- 批准号:1902144
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Certain types of highly symmetric algebraic structures, such as quadratic forms and division algebras, have been ubiquitous in mathematics and its applications, playing important roles in such diverse fields as multiple-antenna wireless communications, efficient representations of spatial rotations, gauge symmetries of theoretical physics, and Galois representations in number theory. While our understanding of these structures has become quite rich, many fundamental questions still remain. This project will employ and develop new tools from the rapidly growing field of arithmetic geometry to deepen our understanding of these algebraic structures. The principal investigator will be involved in the training of students and the organization of conferences in the field.This research project will study the interplay between torsors for linear algebraic groups and field arithmetic, with the aim of developing refined versions of period-index type problems for the Brauer group and related notions for other classes of algebraic structures. Doing this will also involve extending both the scope and applicability of "field patching" and related methods, building on prior work of the investigator with collaborators to produce new local-global principles for wider classes of objects as well as for more general fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
某些类型的高度对称的代数结构,如二次型和除代数,在数学及其应用中无处不在,在多天线无线通信、空间旋转的有效表示、理论物理的规范对称性和数论中的伽罗瓦表示等不同领域中发挥着重要作用。虽然我们对这些结构的理解已经相当丰富,但许多基本问题仍然存在。这个项目将采用和开发新的工具,从快速增长的算术几何领域,以加深我们对这些代数结构的理解。主要研究者将参与培训学生和组织该领域的会议。该研究项目将研究线性代数群和域算术的torsors之间的相互作用,目的是开发Brauer群的周期指数型问题的改进版本和其他代数结构类的相关概念。 这样做还将涉及扩展“现场修补”和相关方法的范围和适用性,建立在研究人员与合作者先前的工作基础上,为更广泛的对象类别以及更一般的领域产生新的局部-全球原则。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local-Global Principles for Constant Reductive Groups over Semi-Global Fields
半全局域上常约简群的局部全局原理
- DOI:10.1307/mmj/20217219
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Colliot-Thélène, Jean-Louis;Harbater, David;Hartmann, Julia;Krashen, Daniel;Parimala, R.;Suresh, V.
- 通讯作者:Suresh, V.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Krashen其他文献
Conformal Blocks on Smoothings via Mode Transition Algebras
- DOI:
10.1007/s00220-025-05237-1 - 发表时间:
2025-05-07 - 期刊:
- 影响因子:2.600
- 作者:
Chiara Damiolini;Angela Gibney;Daniel Krashen - 通讯作者:
Daniel Krashen
Daniel Krashen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Krashen', 18)}}的其他基金
Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
- 批准号:
2401018 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
CAREER: The Arithmetic of Fields and the Complexity of Algebraic Structures
职业:域算术和代数结构的复杂性
- 批准号:
2049180 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
- 批准号:
2001109 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
- 批准号:
1463901 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
CAREER: The Arithmetic of Fields and the Complexity of Algebraic Structures
职业:域算术和代数结构的复杂性
- 批准号:
1151252 - 财政年份:2012
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
The structure of invariants in algebra and geometry
代数和几何中不变量的结构
- 批准号:
1007462 - 财政年份:2010
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
相似海外基金
Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
- 批准号:
2401018 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
NSF-BSF: Derived and quantum corrected structures on arithmetic and geometric moduli
NSF-BSF:算术和几何模量的导出和量子校正结构
- 批准号:
2200914 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Galois Structures and Arithmetic Statistics
伽罗瓦结构和算术统计
- 批准号:
2200541 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Arithmetic and Topological Structures in Physics
物理学中的算术和拓扑结构
- 批准号:
2104330 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
CAREER: The Arithmetic of Fields and the Complexity of Algebraic Structures
职业:域算术和代数结构的复杂性
- 批准号:
2049180 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Arithmetic Extension Classes Associated with Projective Structures (B03)
与射影结构相关的算术扩展类(B03)
- 批准号:
247976571 - 财政年份:2014
- 资助金额:
$ 26万 - 项目类别:
Collaborative Research Centres
Analysis of the structures of Iwasawa modules by arithmetic special elements
用算术特殊元素分析岩泽模的结构
- 批准号:
25400013 - 财政年份:2013
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: The Arithmetic of Fields and the Complexity of Algebraic Structures
职业:域算术和代数结构的复杂性
- 批准号:
1151252 - 财政年份:2012
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Integral structures of arithmetic differential equations and geometries behind them
算术微分方程的积分结构及其背后的几何
- 批准号:
24654002 - 财政年份:2012
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Geometric structures over the absolute point and their arithmetic
绝对点上的几何结构及其算术
- 批准号:
1069218 - 财政年份:2011
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant