Geophysics of Iron in the Earth’s Core

地核中铁的地球物理学

基本信息

  • 批准号:
    2049620
  • 负责人:
  • 金额:
    $ 33.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Located nearly 3000 km below the crust, the Earth’s core is the most remote region within our planet. Mainly composed of iron, the core’s outer shell is liquid while its most inner part, the inner core, is solid. The core plays a central role in the planet’s geomagnetism, dynamic processes, and thermal evolution. Here, the team conducts laboratory experiments at the extreme pressures and temperatures prevailing in Earth’s deep interior. They measure the properties of the iron-rich materials that make up the core, e.g., their deformation mechanisms and viscosity. These properties can be dramatically altered at core conditions. The results give insight into why seismic waves travel at different speeds through different parts of the inner core. They constrain how the Earth’s magnetic field is generated and unveil its past evolution. These outcomes are valuable to many researchers studying deep Earth’s processes: mineral physicists, seismologists, and geodynamicists. The project promotes technical advances useful across disciplines, in geoscience and materials science, and in the industry. It also provides support for a female graduate student, training for undergraduate students, and outreach toward K-12 students and the public.The project aims at characterizing key rheological properties of iron and iron-rich compounds and alloys at the extreme conditions of the deep Earth. Two fundamental questions are addressed: (1) What causes inner-core seismic anisotropy? (2) How does viscous dissipation in the outer core influence the evolution of the geodynamo? To address the first question, the team characterizes the dominant deformation mechanisms and strength of solid iron at high pressures and temperatures. The lattice preferred orientation that develops during iron crystallization is also measured. The goal is to understand how the alignment of elastically anisotropic iron crystals may be acquired during solidification or subsequent deformation (or both). To this aim, the researchers carry out static compression experiments in resistive and laser-heated diamond anvil cells. They perform in situ X-ray imaging and diffraction measurements at national synchrotron facilities. Addressing the second question requires measuring iron viscosity at core conditions. While traditional measurements are limited to lower pressures, the team benefit from new technical developments; these enable a path toward measuring the viscosity of iron dynamically compressed to outer core conditions. Thus the team carries out dynamic compression experiments and use novel X-ray diffraction and imaging techniques at the Materials at Extreme Conditions instrument at the Linac Coherent Light Source (SLAC) and the National Ignition Facility at Lawrence Livermore National Laboratory. These experiments represent new opportunities to leverage the considerable resources and expertise available at national laboratories and apply them to better understand the Earth.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地核位于地壳下方近3000公里处,是地球上最偏远的地区。核芯的外壳主要由铁组成,是液体,而其最里面的部分,即内核,则是固体。地核在地球的地磁、动态过程和热演化中起着核心作用。在这里,该团队在地球深处普遍存在的极端压力和温度下进行实验室实验。它们测量组成核心的富铁材料的性质,例如,它们的变形机制和粘度。这些特性可以在核心条件下显著改变。这些结果揭示了为什么地震波在内核的不同部分以不同的速度传播。它们限制了地球磁场是如何产生的,并揭示了它过去的演化。这些结果对许多研究地球深部过程的研究人员是有价值的:矿物物理学家、地震学家和地球动力学家。该项目促进了跨学科、在地球科学和材料科学以及该行业中有用的技术进步。它还为一名女研究生提供支持,为本科生提供培训,并面向K-12学生和公众进行宣传。该项目旨在表征地球深处极端条件下铁和富铁化合物及合金的关键流变性。讨论了两个基本问题:(1)是什么导致了内核的地震各向异性?(2)外核的粘性耗散如何影响地球发电机的演化?为了解决第一个问题,研究小组描述了固态铁在高压和高温下的主要变形机制和强度。还测量了在铁结晶过程中形成的晶格择优取向。目标是了解如何在凝固或随后的变形(或两者)过程中获得弹性各向异性铁晶体的排列。为此,研究人员在电阻和激光加热的钻石砧座单元中进行了静态压缩实验。他们在国家同步加速器设施中进行现场X射线成像和衍射测量。解决第二个问题需要测量核心条件下的铁粘度。虽然传统的测量仅限于较低的压力,但该团队受益于新的技术发展;这些技术使测量动态压缩到外核条件下的铁的粘度成为可能。因此,该团队在直线加速器相干光源(SLAC)和劳伦斯利弗莫尔国家实验室的国家点火设施的极端条件下的材料仪器上进行了动态压缩实验,并使用了新颖的X射线衍射和成像技术。这些实验代表了利用国家实验室现有的大量资源和专业知识并将其应用于更好地了解地球的新机会。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geomimicry—Liberating high-pressure research by encapsulation
Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa
100 GPa 以上冲击压缩铁陨石的超快 X 射线衍射研究
  • DOI:
    10.3390/min11060567
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Tecklenburg, Sabrina;Colina-Ruiz, Roberto;Hok, Sovanndara;Bolme, Cynthia;Galtier, Eric;Granados, Eduardo;Hashim, Akel;Lee, Hae Ja;Merkel, Sébastien;Morrow, Benjamin
  • 通讯作者:
    Morrow, Benjamin
Noble gas incorporation into silicate glasses: implications for planetary volatile storage
稀有气体掺入硅酸盐玻璃:对行星挥发性储存的影响
  • DOI:
    10.7185/geochemlet.2105
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Yang, H.;Gleason, A.E.;Tkachev, S.N.;Chen, B.;Jeanloz, R.;Mao, W.L.
  • 通讯作者:
    Mao, W.L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wendy Mao其他文献

Harnessing innovative machine learning techniques to combat drug resistance in solid tumors
  • DOI:
    10.1186/s12967-025-06390-w
  • 发表时间:
    2025-04-03
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Hao Zhang;Wendy Mao
  • 通讯作者:
    Wendy Mao

Wendy Mao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wendy Mao', 18)}}的其他基金

Collaborative Research: From Silicate Melts Properties to the Dynamics and Evolution of an Early Basal Magma Ocean
合作研究:从硅酸盐熔体特性到早期基底岩浆洋的动力学和演化
  • 批准号:
    2153918
  • 财政年份:
    2022
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Standard Grant
Determination of Equilibrium Iron Isotope Fractionation Factors at High Pressure
高压下平衡铁同位素分馏因子的测定
  • 批准号:
    1464005
  • 财政年份:
    2015
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Standard Grant
Geophysics of Iron in the Earth's Core
地核铁的地球物理学
  • 批准号:
    1446969
  • 财政年份:
    2015
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Continuing Grant
Geophysics of Iron in the Earth's Core
地核铁的地球物理学
  • 批准号:
    1141929
  • 财政年份:
    2012
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Standard Grant
CAREER: Visualizing Earth's Core-Mantle Interactions using Nanoscale X-ray Tomography
职业:使用纳米级 X 射线断层扫描可视化地球的核心-地幔相互作用
  • 批准号:
    1055454
  • 财政年份:
    2011
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Continuing Grant
Geophysics of Iron in the Earth's D" Layer and Core
地球 D" 层和地核中铁的地球物理学
  • 批准号:
    0738873
  • 财政年份:
    2008
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Continuing Grant

相似国自然基金

IRON MAN正调控铁信号核心转录因子FIT的分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

SBIR Phase I: Clean Iron and Nickel Powder Production for Steel Construction on the Meridiani Planum of Mars and Cathode Manufacture for Lithium-Ion Batteries on Earth
SBIR 第一阶段:火星子午线平原钢结构清洁铁镍粉生产和地球锂离子电池阴极制造
  • 批准号:
    2233554
  • 财政年份:
    2023
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Standard Grant
Earth History Revealed by Iron Electrons in Dense Core-Mantle Boundary Provinces
致密核幔边界区铁电子揭示的地球历史
  • 批准号:
    23K03524
  • 财政年份:
    2023
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CSEDI Collaborative Research: Electrical and Thermal Transport in Iron and Iron Alloys at Core Conditions and its Effects on the Geodynamo and Thermal Earth History
CSEDI 合作研究:核心条件下铁和铁合金的电和热传输及其对地球发电机和热地球历史的影响
  • 批准号:
    1901813
  • 财政年份:
    2019
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Continuing Grant
Development of a non-destructive method for the estimation of production places of ancient iron/steel ware focusing on rare earth elements
开发以稀土元素为重点的古代钢铁器产地无损估算方法
  • 批准号:
    19K13420
  • 财政年份:
    2019
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CSEDI Collaborative Research: Electrical and Thermal Transport in Iron and Iron Alloys at Core Conditions and its Effects on the Geodynamo and Thermal Earth History
CSEDI 合作研究:核心条件下铁和铁合金的电和热传输及其对地球发电机和热地球历史的影响
  • 批准号:
    1901801
  • 财政年份:
    2019
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Standard Grant
Fabrication of room-temperature multiferroic materials by rare-earth iron oxide system with triangular lattices
三角晶格稀土氧化铁系室温多铁材料的制备
  • 批准号:
    18H02057
  • 财政年份:
    2018
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Accumulation of rare earth elements on biogenic iron oxides: implication for the recovery of rare metals by biominerals
稀土元素在生物铁氧化物上的积累:对生物矿物回收稀有金属的影响
  • 批准号:
    18K14172
  • 财政年份:
    2018
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Iron-60 as a heat source for melting and differentiation of Earth-forming planetesimals and planetary embryos
Iron-60 作为地球形成星子和行星胚胎熔化和分化的热源
  • 批准号:
    404680406
  • 财政年份:
    2018
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Priority Programmes
Earth Scientific Approach using Trace Element and Isotope Analyses for Iron Antiquities
使用微量元素和同位素分析来分析铁古物的地球科学方法
  • 批准号:
    16K12809
  • 财政年份:
    2016
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Structural behavior of nano iron hydroxide at the Earth surface
纳米氢氧化铁在地球表面的结构行为
  • 批准号:
    26400511
  • 财政年份:
    2014
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了