Multi-scale functional connectivity in preclinical models of Parkinson's disease

帕金森病临床前模型的多尺度功能连接

基本信息

项目摘要

PROJECT SUMMARY / ABSTRACT: Parkinson’s disease is a progressive neurodegenerative disorder and is associated with significant motor and non-motor symptoms, traceable to the loss of nigral dopamine neurons in addition to widespread circuit dysfunction extending beyond the dying nigrostriatal tract. Imaging-based biomarkers play a critical role in assessing Parkinson’s-related pathological changes, but current biomarkers are limited in their diagnostic and prognostic ability, particularly in early disease stages when intervention would be most beneficial. Functional magnetic resonance imaging (fMRI) enables the study of brain activation and has been widely used to study global functional network changes in Parkinson’s disease. However, standard fMRI is limited in its ability to robustly measure subtle changes with disease, in part due to low sensitivity and specificity; furthermore, interpretation of standard fMRI is challenging due to the indirect link between neuronal function and MRI signal change. This lack of robust direct biomarkers is a critical gap that ultimately limits our ability to understand the underlying pathological changes, as well as evaluate emerging therapies. To overcome these limitations, we propose to leverage an advanced multi-contrast fMRI method that provides high contrast sensitivity, as well as distinct microvascular sensitivity. By coupling this method with pharmacological and chemogenetic manipulations, a direct link between fMRI-based functional networks and underlying neuronal function can be inferred. More specifically, this project aims to a) characterize multi-contrast (total vascular and microvascular) functional connectivity networks in two complementary preclinical models that recapitulate classic hallmarks of Parkinson’s disease - the progressive PFF synucleinopathy model and the acute 6-OHDA model; b) assess the effect of pharmacological dopamine modulation on functional networks, using both acute and chronic treatment paradigms, analogous to the standard treatment paradigm; and c) investigate the effect of endogenous modulation of the dorsal raphe serotonergic circuit and the locus coeruleus noradrenergic circuit – both of which are proposed to be involved in certain non-motor symptomology – on functional networks using chemogenetic methods. These studies will provide insight into functional network changes that occur over different vascular scales and via different neurotransmitter populations. The development of robust MRI biomarkers that relate to dopaminergic, serotonergic, and noradrenergic circuit function and dysfunction may also provide insight into the multifaceted nature of Parkinson’s disease that contributes to both motor and non-motor symptoms. As functional brain network dysfunction is widely observed in Parkinson’s disease, this integrative approach will enable the development of robust biomarkers of Parkinson’s disease with well-characterized pathophysiological origins, which is a critical shortcoming of current technologies.
PROJECT SUMMARY / ABSTRACT: Parkinson’s disease is a progressive neurodegenerative disorder and is associated with significant motor and non-motor symptoms, traceable to the loss of nigral dopamine neurons in addition to widespread circuit dysfunction extending beyond the dying nigrostriatal tract. Imaging-based biomarkers play a critical role in assessing Parkinson’s-related pathological changes, but current biomarkers are limited in their diagnostic and prognostic ability, particularly in early disease stages when intervention would be most beneficial. Functional magnetic resonance imaging (fMRI) enables the study of brain activation and has been widely used to study global functional network changes in Parkinson’s disease. However, standard fMRI is limited in its ability to robustly measure subtle changes with disease, in part due to low sensitivity and specificity; furthermore, interpretation of standard fMRI is challenging due to the indirect link between neuronal function and MRI signal change. This lack of robust direct biomarkers is a critical gap that ultimately limits our ability to understand the underlying pathological changes, as well as evaluate emerging therapies. To overcome these limitations, we propose to leverage an advanced multi-contrast fMRI method that provides high contrast sensitivity, as well as distinct microvascular sensitivity. By coupling this method with pharmacological and chemogenetic manipulations, a direct link between fMRI-based functional networks and underlying neuronal function can be inferred. More specifically, this project aims to a) characterize multi-contrast (total vascular and microvascular) functional connectivity networks in two complementary preclinical models that recapitulate classic hallmarks of Parkinson’s disease - the progressive PFF synucleinopathy model and the acute 6-OHDA model; b) assess the effect of pharmacological dopamine modulation on functional networks, using both acute and chronic treatment paradigms, analogous to the standard treatment paradigm; and c) investigate the effect of endogenous modulation of the dorsal raphe serotonergic circuit and the locus coeruleus noradrenergic circuit – both of which are proposed to be involved in certain non-motor symptomology – on functional networks using chemogenetic methods. These studies will provide insight into functional network changes that occur over different vascular scales and via different neurotransmitter populations. The development of robust MRI biomarkers that relate to dopaminergic, serotonergic, and noradrenergic circuit function and dysfunction may also provide insight into the multifaceted nature of Parkinson’s disease that contributes to both motor and non-motor symptoms. As functional brain network dysfunction is widely observed in Parkinson’s disease, this integrative approach will enable the development of robust biomarkers of Parkinson’s disease with well-characterized pathophysiological origins, which is a critical shortcoming of current technologies.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashley M Stokes其他文献

Ashley M Stokes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashley M Stokes', 18)}}的其他基金

Multi-scale functional connectivity in preclinical models of Parkinson's disease
帕金森病临床前模型的多尺度功能连接
  • 批准号:
    10543831
  • 财政年份:
    2022
  • 资助金额:
    $ 39.94万
  • 项目类别:
Investigating the role of cerebral perfusion in demyelination and repair in multiple sclerosis with MRI
用 MRI 研究脑灌注在多发性硬化症脱髓鞘和修复中的作用
  • 批准号:
    10453345
  • 财政年份:
    2022
  • 资助金额:
    $ 39.94万
  • 项目类别:
Investigating the role of cerebral perfusion in demyelination and repair in multiple sclerosis with MRI
用 MRI 研究脑灌注在多发性硬化症脱髓鞘和修复中的作用
  • 批准号:
    10623344
  • 财政年份:
    2022
  • 资助金额:
    $ 39.94万
  • 项目类别:
Multi-parametric Perfusion MRI for Therapy Response Assessment in Brain Cancer
多参数灌注 MRI 用于脑癌治疗反应评估
  • 批准号:
    10190871
  • 财政年份:
    2020
  • 资助金额:
    $ 39.94万
  • 项目类别:

相似国自然基金

Agonist-GPR119-Gs复合物的结构生物学研究
  • 批准号:
    32000851
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
  • 批准号:
    24K12256
  • 财政年份:
    2024
  • 资助金额:
    $ 39.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
  • 批准号:
    24K19176
  • 财政年份:
    2024
  • 资助金额:
    $ 39.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
  • 批准号:
    10578068
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
  • 批准号:
    10933287
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
  • 批准号:
    10650593
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
  • 批准号:
    10649275
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
  • 批准号:
    10784209
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
  • 批准号:
    10734158
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
  • 批准号:
    10580259
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
  • 批准号:
    23K05057
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了