Discretization of geometrically exact elasto-plastic Cosserat shells using geodesic finite elements
使用测地有限元对几何精确的弹塑性 Cosserat 壳进行离散化
基本信息
- 批准号:245812845
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cosserat materials are a generalization of the classic continuum mechanics model. In addition to the usual displacement field, a field of rotations is considered. In the case of shell models, these rotations can be interpreted naturally as the orientation and torsion of the shell normal vector. They hence lead to a natural extension of the Mindlin-Reissner model for large strains.The discretization of such models is notoriously difficult. The usual finite elements cannot be used, since the configuration space has the structure of a nonlinear manifold. Existing approaches suffer from instabilities and outright crashes when dealing with large rotations, and in many cases they do not preserve the objectivity of continuous models.During the last few years, geodesic finite elements (GFE) have been developed by the applicant. These generalize normal Lagrange elements to the case of functions with values in a nonlinear manifold. As a special case, finite elements of arbitrary order for Cosserat materials are obtained. The discretization allows rotations of any size, and provably preserves the objectivity of continuous models.The goal of this project is to apply geodesic finite elements for the discretization of Cosserat shells. For this, a sequence of shell models of increasing complexity will be treated. Preliminary work covering the purely elastic case is already available.
Cosserat 材料是经典连续介质力学模型的推广。除了通常的位移场之外,还考虑旋转场。对于壳模型,这些旋转可以自然地解释为壳法向量的方向和扭转。因此,它们导致了 Mindlin-Reissner 模型对于大应变的自然扩展。众所周知,此类模型的离散化非常困难。不能使用通常的有限元,因为配置空间具有非线性流形的结构。现有方法在处理大旋转时会遇到不稳定和彻底崩溃的问题,并且在许多情况下它们不能保持连续模型的客观性。在过去几年中,申请人开发了测地有限元(GFE)。 这些将正常拉格朗日元素推广到具有非线性流形值的函数的情况。作为一个特例,获得了 Cosserat 材料的任意阶有限元。离散化允许任何大小的旋转,并可证明保留连续模型的客观性。该项目的目标是应用测地线有限元来离散化 Cosserat 壳。 为此,将处理一系列复杂性不断增加的壳模型。覆盖纯弹性外壳的初步工作已经完成。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical treatment of a geometrically nonlinear planar Cosserat shell model
- DOI:10.1007/s00466-016-1263-5
- 发表时间:2014-12
- 期刊:
- 影响因子:4.1
- 作者:O. Sander;P. Neff;M. Bîrsan
- 通讯作者:O. Sander;P. Neff;M. Bîrsan
The geometrically nonlinear Cosserat micropolar shear–stretch energy. Part I: A general parameter reduction formula and energy‐minimizing microrotations in 2D
几何非线性 Cosserat 微极性剪切拉伸能第 I 部分:通用参数缩减公式和能量最小化二维微旋转
- DOI:10.1002/zamm.201500194
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:A. Fischle;P. Nefff
- 通讯作者:P. Nefff
The geometrically nonlinear Cosserat micropolar shear–stretch energy. Part II: Non‐classical energy‐minimizing microrotations in 3D and their computational validation ***
几何非线性 Cosserat 微极性剪切拉伸能第二部分:3D 中的非经典能量最小化微旋转及其计算验证***
- DOI:10.1002/zamm.201600030
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:A. Fischle;P. Neff
- 通讯作者:P. Neff
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Oliver Sander其他文献
Professor Dr. Oliver Sander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Oliver Sander', 18)}}的其他基金
Nonsmooth Multi-Level Optimization Algorithms for Energetic Formulations of Finite-Strain Elastoplasticity
有限应变弹塑性能量公式的非光滑多级优化算法
- 批准号:
423764152 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Understanding and engineering geometrically frustrated self-assembly
理解和设计几何受阻的自组装
- 批准号:
2349818 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fredholm Alternative Quadrature: A Novel Framework for Numerical Integration Over Geometrically Complex Domains
Fredholm 替代求积:几何复杂域上数值积分的新颖框架
- 批准号:
2309712 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Exotic Magnetism in Geometrically Frustrated Magnets Under Extreme Conditions
极端条件下几何受挫磁体的奇异磁性
- 批准号:
RGPIN-2015-06061 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
I-Corps: Hybrid additive manufacturing that provides computational solutions to fabricate geometrically complex components
I-Corps:混合增材制造,提供计算解决方案来制造几何复杂的组件
- 批准号:
2319679 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Molecular dynamics study of linear alkanes geometrically restricted in carbon nanospaces
碳纳米空间几何限制的直链烷烃的分子动力学研究
- 批准号:
22K04866 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Simulation of Geometrically Flexible Materials with Applications to Computer Graphics and Computational Science
职业:几何柔性材料的模拟及其在计算机图形学和计算科学中的应用
- 批准号:
2153851 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
I-Corps: Hybrid additive manufacturing that provides computational solutions to fabricate geometrically complex components
I-Corps:混合增材制造,提供计算解决方案来制造几何复杂的组件
- 批准号:
2107977 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Optical Bound States and Non-linearity in Geometrically-Modulated Dielectric Nanowires
几何调制介电纳米线中的光学束缚态和非线性
- 批准号:
2121643 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Development of Geometrically-Flexible Physics-Based Convolution Kernels
基于几何灵活物理的卷积核的开发
- 批准号:
2110745 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant