Development of Geometrically-Flexible Physics-Based Convolution Kernels
基于几何灵活物理的卷积核的开发
基本信息
- 批准号:2110745
- 负责人:
- 金额:$ 29.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Data compression is essential in many areas of technology such as satellite imaging, speech recognition, database design, and much more. However, most of this understanding is based on data with good properties. Increasingly, there is a necessity for techniques that can be applied to complex or incomplete data, so-called flexible data. This project contributes to the development of more advanced compression techniques that can be applied to flexible data. The main purpose of the project is the development of physics-based computational techniques that enhance data compression algorithms by making them more accurate and efficient. The ideas developed in this project are applicable to more traditional computational fluid dynamics applications such as hypersonics and atmospheric modeling as well as areas such as machine learning. In addition to the scientific impact, this project broadens the participation of women in the computational sciences. It includes support for student mentorship, traineeship, and retention. The computational skills that the students will obtain are broadly applicable and allows them access to a variety of career options, including in areas of great national need. The PI expects that the tools developed in this proposal will also be included in future outreach talks to the general public.The overall goal of this research is to develop innovative, mathematically rigorous, geometrically flexible, physics-based, multi-dimensional convolution kernels that are useful in areas of data compression, shock filtering, post-processing, and machine learning. The GEOCONKER (GEOmetrically-flexible physics-based CONvolution KERnels) project will not only concentrate on establishing a robust analytical framework, but also on the efficient implementation of these kernels. This will allow for enhancing accurate capturing of multi-scale physics that includes information from sensor data. These techniques will be able to be applied to different types of data and in different manners. These convolution kernels will aid in establishing provable high-order resolution filters by establishing the interaction between the mathematics, physics, numerics, and geometry in applications. These novel techniques will use (flexible) spline functions that can adapt to the geometry of the given data on the fly. This will allow for efficient computational codes that will enhance the accurate capturing and filtering of multi-scale physics. This will include kernels that are useful in shock capturing, accuracy enhancement, and filtering of noisy data. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据压缩在许多技术领域都是必不可少的,例如卫星成像、语音识别、数据库设计等等。然而,大多数这种理解是基于具有良好属性的数据。越来越多的技术,可以应用于复杂或不完整的数据,所谓的灵活数据的必要性。该项目有助于开发更先进的压缩技术,可应用于灵活的数据。该项目的主要目的是开发物理-本项目中提出的思想也适用于更传统的计算流体力学应用,如高超声速和大气模拟除了科学影响外,该项目还扩大了妇女在计算科学领域的参与。它包括为学生提供指导、培训和保留。 学生将获得的计算技能是广泛适用的,并允许他们获得各种职业选择,包括在国家需求很大的领域。PI希望在此提案中开发的工具也将包括在未来面向公众的推广会谈中。这项研究的总体目标是开发创新的、数学上严格的、几何上灵活的、基于物理的多维卷积核,这些卷积核在数据压缩、冲击滤波、后处理和机器学习领域都很有用。GEOCONKER(基于几何灵活物理学的卷积核)项目不仅致力于建立一个强大的分析框架,而且致力于这些内核的有效实现。这将允许增强包括来自传感器数据的信息的多尺度物理的准确捕获。这些技术将能够以不同的方式应用于不同类型的数据。 这些卷积核将通过在应用中建立数学、物理、数值和几何之间的相互作用来帮助建立可证明的高阶分辨率滤波器。这些新技术将使用(灵活的)样条函数,可以动态适应给定数据的几何形状。这将允许高效的计算代码,从而增强多尺度物理的准确捕获和过滤。这将包括在冲击捕获、准确性增强和噪声数据过滤方面有用的内核。该奖项反映了NSF的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samy Wu Fung其他文献
Structured World Representations in Maze-Solving Transformers
迷宫解决变压器中的结构化世界表示
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michael I. Ivanitskiy;Alex F Spies;Tilman Rauker;Guillaume Corlouer;Chris Mathwin;Lucia Quirke;Can Rager;Rusheb Shah;Dan Valentine;Cecilia G. Diniz Behn;Katsumi Inoue;Samy Wu Fung - 通讯作者:
Samy Wu Fung
A Neural Network Approach for High-Dimensional Optimal Control Applied to Multiagent Path Finding
应用于多智能体路径查找的高维最优控制神经网络方法
- DOI:
10.1109/tcst.2022.3172872 - 发表时间:
2021 - 期刊:
- 影响因子:4.8
- 作者:
Derek Onken;L. Nurbekyan;Xingjian Li;Samy Wu Fung;S. Osher;Lars Ruthotto - 通讯作者:
Lars Ruthotto
Global Solutions to Nonconvex Problems by Evolution of Hamilton-Jacobi PDEs
Hamilton-Jacobi 偏微分方程演化的非凸问题全局解
- DOI:
10.1007/s42967-022-00239-5 - 发表时间:
2022 - 期刊:
- 影响因子:1.6
- 作者:
Howard Heaton;Samy Wu Fung;S. Osher - 通讯作者:
S. Osher
Faster Predict-and-Optimize with Three-Operator Splitting
通过三算子分割加快预测和优化速度
- DOI:
10.48550/arxiv.2301.13395 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Daniel Mckenzie;Samy Wu Fung;Howard Heaton - 通讯作者:
Howard Heaton
A multiscale method for model order reduction in PDE parameter estimation
偏微分方程参数估计中模型降阶的多尺度方法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
Samy Wu Fung;Lars Ruthotto - 通讯作者:
Lars Ruthotto
Samy Wu Fung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samy Wu Fung', 18)}}的其他基金
Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
- 批准号:
2309810 - 财政年份:2023
- 资助金额:
$ 29.76万 - 项目类别:
Continuing Grant
相似海外基金
Understanding and engineering geometrically frustrated self-assembly
理解和设计几何受阻的自组装
- 批准号:
2349818 - 财政年份:2024
- 资助金额:
$ 29.76万 - 项目类别:
Continuing Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
$ 29.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fredholm Alternative Quadrature: A Novel Framework for Numerical Integration Over Geometrically Complex Domains
Fredholm 替代求积:几何复杂域上数值积分的新颖框架
- 批准号:
2309712 - 财政年份:2023
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
Exotic Magnetism in Geometrically Frustrated Magnets Under Extreme Conditions
极端条件下几何受挫磁体的奇异磁性
- 批准号:
RGPIN-2015-06061 - 财政年份:2022
- 资助金额:
$ 29.76万 - 项目类别:
Discovery Grants Program - Individual
I-Corps: Hybrid additive manufacturing that provides computational solutions to fabricate geometrically complex components
I-Corps:混合增材制造,提供计算解决方案来制造几何复杂的组件
- 批准号:
2319679 - 财政年份:2022
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
Molecular dynamics study of linear alkanes geometrically restricted in carbon nanospaces
碳纳米空间几何限制的直链烷烃的分子动力学研究
- 批准号:
22K04866 - 财政年份:2022
- 资助金额:
$ 29.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Simulation of Geometrically Flexible Materials with Applications to Computer Graphics and Computational Science
职业:几何柔性材料的模拟及其在计算机图形学和计算科学中的应用
- 批准号:
2153851 - 财政年份:2021
- 资助金额:
$ 29.76万 - 项目类别:
Continuing Grant
I-Corps: Hybrid additive manufacturing that provides computational solutions to fabricate geometrically complex components
I-Corps:混合增材制造,提供计算解决方案来制造几何复杂的组件
- 批准号:
2107977 - 财政年份:2021
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
Optical Bound States and Non-linearity in Geometrically-Modulated Dielectric Nanowires
几何调制介电纳米线中的光学束缚态和非线性
- 批准号:
2121643 - 财政年份:2021
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
Exotic Magnetism in Geometrically Frustrated Magnets Under Extreme Conditions
极端条件下几何受挫磁体的奇异磁性
- 批准号:
RGPIN-2015-06061 - 财政年份:2021
- 资助金额:
$ 29.76万 - 项目类别:
Discovery Grants Program - Individual