Fredholm Alternative Quadrature: A Novel Framework for Numerical Integration Over Geometrically Complex Domains

Fredholm 替代求积:几何复杂域上数值积分的新颖框架

基本信息

  • 批准号:
    2309712
  • 负责人:
  • 金额:
    $ 28.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Integration is fundamental to the mathematical modeling of many processes in science, engineering, medicine, and economics. For example, integration is used to mathematically express the total quantity of a substance, such as a hazardous chemical, over a given spatial region (or domain). However, the integration problems in these models can rarely be solved by pen and paper techniques, so researchers must employ numerical integration, or quadrature, methods. This project introduces an entirely new framework, Fredholm Alternative Quadrature (FAQ), for performing the essential task of quadrature. It thus gives researchers new effective options for tackling integration problems, especially those involving geometrically complicated domains and irregularly sampled data. The framework also offers a new approach to a classical subject that has been around for millennia, providing fresh insights and pedagogical opportunities. The project will support one Ph.D. student in the recently created computational math, science, & engineering (CMSE) program, which will also help bolster the research portfolio of this program. Building from a successful track record of recruiting graduate students in computational mathematics from underrepresented groups, the investigator will continue working with the Institute for Inclusive and Transformative Scholarship to help identify potential candidates for the project. New educational opportunities for undergraduate, master's, and Ph.D. students will also be created through the development of a Vertically Integrated Project (VIP) that incorporates topics from the project.The FAQ framework is based on a relationship between the continuous Fredholm Alternative (FA) theorem for Poisson's equation and the discrete FA for linear systems that arise from discretizing this equation. It does not employ integration but instead requires discretizing certain Laplace operators at a given set of points over the integration domain and solving an eigenvalue problem. To maximize the flexibility and practicality of FAQ, the mesh-free radial basis function finite difference (RBF-FD) method for discretizing the Laplace operators will be used. This results in a method that 1) does not require explicitly or implicitly integrating basis functions, 2) can be used on geometrically complicated domains (even surfaces), 3) can be implemented for scattered samples of the integrand without meshing, 4) can yield high orders of accuracy for smooth functions, and 5) can be computed efficiently. Several numerical and theoretical advancements will also be made, including techniques for producing high-order accurate RBF-FD discretizations, efficient meshfree multilevel methods for computing the FAQ formulas, least squares techniques for enhancing the stability of FAQ formulas, tools for analyzing FAQ approximation properties, and new insights on classical quadrature formulas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
集成是科学、工程、医学和经济学中许多过程的数学建模的基础。例如,积分用于以数学方式表示给定空间区域(或域)上某种物质(如危险化学品)的总量。然而,这些模型中的积分问题很少能通过纸笔技术来解决,因此研究人员必须采用数值积分或正交方法。这个项目引入了一个全新的框架,Fredholm替代正交(FAQ),用于执行正交的基本任务。因此,它为研究人员解决积分问题提供了新的有效选择,特别是那些涉及几何复杂域和不规则采样数据的问题。这个框架也为这个已经存在了几千年的经典学科提供了一种新的方法,提供了新的见解和教学机会。该项目将支持最近创建的计算数学、科学与工程(CMSE)项目的一名博士生,这也将有助于加强该项目的研究组合。基于从代表性不足的群体中招募计算数学研究生的成功记录,研究者将继续与包容性和变革性奖学金研究所合作,帮助确定该项目的潜在候选人。通过垂直整合项目(VIP)的发展,整合项目中的主题,还将为本科生、硕士和博士学生创造新的教育机会。常见问题解答框架是基于泊松方程的连续Fredholm替代定理(FA)和线性系统的离散FA之间的关系,这些线性系统是由泊松方程离散化产生的。它不使用积分而是需要在积分域上的一组给定点上离散某些拉普拉斯算子并求解一个特征值问题。为了最大限度地提高FAQ的灵活性和实用性,将使用无网格径向基函数有限差分(RBF-FD)方法对拉普拉斯算子进行离散化。这导致了一种方法,1)不需要显式或隐式积分基函数,2)可用于几何复杂的域(偶数曲面),3)可以实现对被积体的分散样本而不进行网格划分,4)可以产生高阶精度的光滑函数,5)可以高效地计算。在数值和理论方面也将取得一些进展,包括产生高阶精确RBF-FD离散化的技术、计算FAQ公式的高效无网格多层方法、提高FAQ公式稳定性的最小二乘技术、分析FAQ近似性质的工具以及对经典正交公式的新见解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grady Wright其他文献

Grady Wright的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grady Wright', 18)}}的其他基金

Collaborative Research: Optimal-Complexity Spectral Methods for Complex Fluids
合作研究:复杂流体的最优复杂谱方法
  • 批准号:
    1952674
  • 财政年份:
    2020
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Scalable, high-order mesh-free algorithms applied to bulk-surface biomechanical problems
AF:小型:协作研究:应用于体表面生物力学问题的可扩展、高阶无网格算法
  • 批准号:
    1717556
  • 财政年份:
    2017
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
SI2-SSE: GEM3D: Open-Source Cartesian Adaptive Complex Terrain Atmospheric Flow Solver for GPU Clusters
SI2-SSE:GEM3D:适用于 GPU 集群的开源笛卡尔自适应复杂地形大气流量求解器
  • 批准号:
    1440638
  • 财政年份:
    2014
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Chemically-active Viscoelastic Mixture Models in Physiology: Formulation, Analysis, and Computation
FRG:合作研究:生理学中的化学活性粘弹性混合物模型:公式、分析和计算
  • 批准号:
    1160379
  • 财政年份:
    2012
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Fast and Efficient Radial Basis Function Algorithms for Geophysical Modeling on Arbitrary Geometries
CMG 协作研究:任意几何形状地球物理建模的快速高效径向基函数算法
  • 批准号:
    0934581
  • 财政年份:
    2009
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG--Freedom from Coordinate Systems, and Spectral Accuracy with Local Refinement: Radial Basis Functions for Climate and Space-Weather Prediction
合作研究:CMG——不受坐标系影响,局部细化的光谱精度:气候和空间天气预报的径向基函数
  • 批准号:
    0801309
  • 财政年份:
    2007
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG--Freedom from Coordinate Systems, and Spectral Accuracy with Local Refinement: Radial Basis Functions for Climate and Space-Weather Prediction
合作研究:CMG——不受坐标系影响,局部细化的光谱精度:气候和空间天气预报的径向基函数
  • 批准号:
    0620090
  • 财政年份:
    2006
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant

相似国自然基金

可降解镁金属通过Ptc调控Hedgehog-Alternative Wnt通路促进牵张成骨的机制研究
  • 批准号:
    81974325
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
以果蝇为模式解析Alternative PolyAdenylation在生殖细胞分化过程中的功能
  • 批准号:
    31471345
  • 批准年份:
    2014
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目

相似海外基金

嫌色素性腎細胞癌におけるAlternative lengthening of telomeresの検討
嫌色肾细胞癌端粒选择性延长的检查
  • 批准号:
    24K10466
  • 财政年份:
    2024
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sustaining chicken-meat production with alternative protein sources
利用替代蛋白质来源维持鸡肉生产
  • 批准号:
    LP220100292
  • 财政年份:
    2024
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Linkage Projects
An Alternative Mode of Student Well-Being or Unhappy Schools? Exploring Interdependence in Education across East and Southeast Asia, Building Evidence to Impact the Post-SDG 2030 Global Policy Agenda
学生福祉的替代模式还是不快乐的学校?
  • 批准号:
    23K25636
  • 财政年份:
    2024
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Animal-Identical, Plant-Grown: Molecular Farming for healthy and natural alternative meat ingredients
与动物相同,植物种植:分子农业提供健康和天然的替代肉类成分
  • 批准号:
    10087096
  • 财政年份:
    2024
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Investment Accelerator
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
  • 批准号:
    10089592
  • 财政年份:
    2024
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Collaborative R&D
PROTSENS Rethinking Alternative PROTein Extraction: Decoding SENsory-Protein Extraction Relationships
PROTSENS 重新思考替代性蛋白质提取:解码感觉-蛋白质提取关系
  • 批准号:
    EP/Z000785/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Fellowship
Develop novel-processing for the use of paludiculture biomass as an alternative feedstock for regenerative pulp production.
开发利用沼生生物质作为再生纸浆生产替代原料的新工艺。
  • 批准号:
    10102591
  • 财政年份:
    2024
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Investment Accelerator
Infant formula: Alternative protein study and regulatory roadmap
婴儿配方奶粉:替代蛋白质研究和监管路线图
  • 批准号:
    10108649
  • 财政年份:
    2024
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Collaborative R&D
Enabling L10 Ordering in Bulk FeNi Alloys and an Alternative for Nd2Fe14B- Based Permanent Magnets
实现散装 FeNi 合金的 L10 订购以及基于 Nd2Fe14B 的永磁体的替代品
  • 批准号:
    2400480
  • 财政年份:
    2024
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
Re-presenting population science data in the context of shifting demographic dynamics, climate change and alternative epistemologies
在不断变化的人口动态、气候变化和替代认识论的背景下重新呈现人口科学数据
  • 批准号:
    2341434
  • 财政年份:
    2024
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了