Human Forests versus Random Forest Models in Prediction

预测中的人类森林与随机森林模型

基本信息

  • 批准号:
    2050727
  • 负责人:
  • 金额:
    $ 29.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Accurate predictions are key to effective decision making under uncertainty. Psychology research has shown that predictive judgments can be improved by considering the outside view: placing a problem in the context of similar historical cases, rather than focusing on its unique features. But choosing the right comparison is difficult: statisticians have studied the so-called reference class problem since at least the 19th century. The main objective of this project is to assess the performance of a new method for crowdsourcing reference-class judgments and producing probability forecasts, relative to new and established machine learning models. The method, called human forests, promotes outside-view thinking by enabling forecasters to construct reference classes from a database of historical cases. The human forests method shares a conceptual connection with random forest machine models. In both, predictions are based on frequencies assessed in classification trees. While random forest models use training data to build the trees, human forests rely on forecaster' collective knowledge. The project will examine the relative strengths of both methods and explore combinations of the two. We will also assess methods for improving the accuracy of individual forecasters. The intellectual merit of the proposal resides in its promise to address the reference class problem through collective intelligence. The project will compare the accuracy of human forests, complemented with metacognitive training and statistical aggregation techniques, with that of random forest models, and a human-machine hybrid approach. The latter will use bi-level optimization, providing an advancement in the use of optimization in machine learning, with the aim of pushing the frontier of both machine learning and human capabilities. The core randomized experiments will focus on clinical trial forecasting, namely, predicting the probability of advancement for cancer treatments. The study methods will utilize naturalistic, longitudinal, large-scale online experiments, and will compare the performance of subject-matter experts and generalists. The project will also provide training for researchers and students in machine learning and collective intelligence and develop materials for interactive exercises in high-school STEM classes, undergraduate and graduate courses in statistics and decision making. Assessing the relative importance of general forecasting skill versus subject matter expertise may help address skill scarcity problems in areas dependent exclusively on specialists. The research aims to improve the predictability of clinical trial outcomes and similarly complex activities. Accurate forecasts regarding the success of clinical trial programs may in turn improve risk management, resource allocation, and ultimately result in wider availability of life-saving treatments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
准确的预测是在不确定情况下做出有效决策的关键。心理学研究表明,预测性判断可以通过考虑外部观点来改善:将问题置于类似历史案例的背景下,而不是关注其独特的特征。但选择正确的比较是困难的:统计学家至少从19世纪世纪就开始研究所谓的参照类问题。该项目的主要目标是评估一种新的众包参考类判断和概率预测方法的性能,相对于新的和已建立的机器学习模型。这种方法被称为人类森林,通过使预测者能够从历史案例数据库中构建参考类来促进外部视角思维。人类森林方法与随机森林机器模型有着概念上的联系。在这两种情况下,预测都是基于分类树中评估的频率。虽然随机森林模型使用训练数据来构建树木,但人类森林依赖于预测员的集体知识。该项目将研究这两种方法的相对优势,并探索两者的结合。我们还将评估提高个人预报准确性的方法。该提案的学术价值在于它承诺通过集体智慧解决参考类问题。该项目将比较人类森林的准确性,辅之以元认知训练和统计汇总技术,以及随机森林模型和人机混合方法的准确性。后者将使用双层优化,在机器学习中使用优化方面取得进步,旨在推动机器学习和人类能力的前沿。核心随机实验将侧重于临床试验预测,即预测癌症治疗的进展概率。研究方法将利用自然,纵向,大规模的在线实验,并将比较主题专家和通才的表现。该项目还将为研究人员和学生提供机器学习和集体智慧方面的培训,并为高中STEM课程、本科和研究生统计和决策课程的互动练习开发材料。评估一般预测技能相对于主题专门知识的相对重要性,可能有助于解决完全依赖专家的领域的技能短缺问题。该研究旨在提高临床试验结果和类似复杂活动的可预测性。对临床试验项目成功与否的准确预测,反过来可能会改善风险管理、资源分配,并最终导致更广泛的救生治疗的可用性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CLUR: Uncertainty Estimation for Few-Shot Text Classification with Contrastive Learning
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bei Xiao其他文献

Partially dissipative 2D Boussinesq equations with Navier type boundary conditions
具有 Navier 型边界条件的部分耗散二维 Boussinesq 方程
  • DOI:
    10.1016/j.physd.2017.07.003
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Weiwei Hu;Yanzhen Wang;JiahongWu;Bei Xiao;Jia yuan
  • 通讯作者:
    Jia yuan
Interaction between static visual cues and force-feedback on the perception of mass of virtual objects
静态视觉线索和力反馈之间的交互对虚拟物体质量的感知
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenyan Bi;Jonathan Newport;Bei Xiao
  • 通讯作者:
    Bei Xiao
Measurements of long-range suppression in human opponent S-cone and achromatic luminance channels.
人类对手 S 锥体和消色差亮度通道的远距离抑制测量。
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Bei Xiao;Alex R. Wade
  • 通讯作者:
    Alex R. Wade
Association between neutrophil percentage-to-albumin ratio and mortality in Hemodialysis patients: insights from a prospective cohort study
  • DOI:
    10.1186/s12882-025-04027-0
  • 发表时间:
    2025-03-04
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Jiaxin Zhu;Rui Shi;Xunliang Li;Mengqian Liu;Linfei Yu;Youwei Bai;Yong Zhang;Wei Wang;Lei Chen;Guangcai Shi;Zhi Liu;Yuwen Guo;Jihui Fan;Shanfei Yang;Xiping Jin;Fan Zhang;Xiaoying Zong;Xiaofei Tang;Jiande Chen;Tao Ma;Bei Xiao;Deguang Wang
  • 通讯作者:
    Deguang Wang
Mobile phone in your personal bubble: the effect of physical environment and personalized information on mobile advertising
个人泡沫中的手机:物理环境和个性化信息对移动广告的影响
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bei Xiao
  • 通讯作者:
    Bei Xiao

Bei Xiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

REU Site: Ecology and Management for Resilient and Adapted Forests
REU 网站:弹性和适应性森林的生态和管理
  • 批准号:
    2348895
  • 财政年份:
    2024
  • 资助金额:
    $ 29.12万
  • 项目类别:
    Continuing Grant
The challenge of scaling methane fluxes in mangrove and mountain forests for an accurate methane budget
缩放红树林和山地森林甲烷通量以获得准确的甲烷预算的挑战
  • 批准号:
    24K01797
  • 财政年份:
    2024
  • 资助金额:
    $ 29.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cloud immersion and the future of tropical montane forests
云沉浸和热带山地森林的未来
  • 批准号:
    EP/Y027736/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.12万
  • 项目类别:
    Fellowship
Drivers and impacts of insect biodiversity changes across pantropical forests
泛热带森林昆虫生物多样性变化的驱动因素和影响
  • 批准号:
    MR/X032949/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.12万
  • 项目类别:
    Fellowship
Climate Recovery and Adaptation potential of Forests in the Tropics
热带森林的气候恢复和适应潜力
  • 批准号:
    MR/X034097/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.12万
  • 项目类别:
    Fellowship
Amazon-SOS: a Safe Operating Space for Amazonian Forests
Amazon-SOS:亚马逊森林的安全作业空间
  • 批准号:
    NE/X018903/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.12万
  • 项目类别:
    Research Grant
THERMOS:Thermal Safety Margins of Earth's Tropical Forests
膳魔师:地球热带森林的热安全裕度
  • 批准号:
    NE/Y00163X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.12万
  • 项目类别:
    Research Grant
Amazon-SOS: a Safe Operating Space for Amazonian Forests
Amazon-SOS:亚马逊森林的安全作业空间
  • 批准号:
    NE/X019055/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.12万
  • 项目类别:
    Research Grant
Amazon-SOS: a Safe Operating Space for Amazonian Forests
Amazon-SOS:亚马逊森林的安全作业空间
  • 批准号:
    NE/X018946/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.12万
  • 项目类别:
    Research Grant
Cells to ecosystems: fossil xylem is the missing link in reconstructing water use by plants, forests, and global vegetation in deep time
细胞到生态系统:木质部化石是重建植物、森林和全球植被深层用水的缺失环节
  • 批准号:
    2323169
  • 财政年份:
    2024
  • 资助金额:
    $ 29.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了