REU Site: Software and Data Analytics
REU 网站:软件和数据分析
基本信息
- 批准号:2050883
- 负责人:
- 金额:$ 38.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will establish a three-year REU site in software and data analytics at East Carolina University (ECU). It will offer a ten-week research program for ten undergraduate students during summer semesters. The faculty-student interaction, as well as interaction among students, will take different forms, including daily Scrum meetings, tutorials, weekly meetings, lectures, seminars, group meetings, and field trips. The REU project will allow a diverse pool of undergraduate students to experience cutting-edge research. Students will gain valuable research skills that will prepare them for their future fields of study, while helping them to develop into self-reliant STEM researchers. Furthermore, their exposure to research will motivate them to continue to graduate studies. Finally, the REU project will provide students with an opportunity to collaborate with their faculty mentors and student peers across the nation after the summer program ends. The sample research projects cover open research topics in software and data analytics. Code Recommendation for Programming Language Learners investigates machine learning techniques for building code recommendation systems aimed at beginning programmers, taking their level of programming knowledge into account. Intelligent Program Update Detection and Automation uses version histories of software systems to understand how code related to uses of a software library (via an Application Programming Interface, or API) evolves, to identify when this evolution needs to occur, and to build transformation scripts to partially or fully automate the changes needed to support a newer API version. Human-Computer Collaborative Dialogue Systems explores techniques for automated regression test case prioritization that utilizes techniques from information retrieval such as term similarity. Link Recovery Systems investigates the use of information retrieval techniques for recovering traceability links between program requirements, bug reports, and project source code. Using Machine Learning to Estimate Software Development Effort explores the use of machine learning techniques to estimate software development effort. Understanding Implicit Extension APIs investigates uses of machine learning for API recommendation, specifically in the context of APIs in dynamic languages that are created implicitly in the code. Machine Learning Algorithms for Biometric Data Analysis uses a combination of machine learning techniques and mobile application usage data (e.g., about swipe gestures) to infer demographic characteristics of app users. Performance Evaluation of Machine Learning Algorithms explores the use of machine learning for prediction, using the example of the next day closing price for crypt-currencies. Students participating in these projects will learn about topics including code recommendation systems, static program analysis, program transformation, classical techniques for classification in machine learning (e.g., k-nearest neighbors), deep learning, information retrieval, software testing, software maintenance, software repository mining, software quality metrics, crypto-currencies, and both theoretical and empirical measurements of algorithm performance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将在东卡罗莱纳大学(ECU)建立一个为期三年的软件和数据分析REU网站。它将在夏季学期为10名本科生提供为期10周的研究计划。教师与学生的互动,以及学生之间的互动,将采取不同的形式,包括日常的会议,辅导,每周会议,讲座,研讨会,小组会议和实地考察。REU项目将允许多样化的本科生体验前沿研究。学生将获得宝贵的研究技能,这将为他们未来的研究领域做好准备,同时帮助他们发展成为自力更生的STEM研究人员。此外,他们接触研究将激励他们继续研究生学习。最后,REU项目将为学生提供一个机会,在暑期课程结束后,与他们的教师导师和全国各地的学生同行合作。样本研究项目涵盖软件和数据分析领域的开放式研究主题。编程语言学习者的代码推荐研究了机器学习技术,用于构建针对初级程序员的代码推荐系统,同时考虑他们的编程知识水平。智能程序更新检测和自动化使用软件系统的版本历史来理解与软件库的使用相关的代码(经由应用编程接口或API)如何演变,以识别何时需要发生这种演变,并构建转换脚本以部分或完全自动化支持较新的API版本所需的改变。人机协作对话系统探索了自动回归测试用例优先级排序的技术,该技术利用了诸如术语相似性之类的信息检索技术。链接恢复系统研究了信息检索技术的使用,以恢复程序需求,错误报告和项目源代码之间的可追溯性链接。使用机器学习来估计软件开发工作量探索了使用机器学习技术来估计软件开发工作量。了解隐式扩展API研究了机器学习在API推荐中的应用,特别是在代码中隐式创建的动态语言API的上下文中。用于生物特征数据分析的机器学习算法使用机器学习技术和移动的应用使用数据(例如,关于滑动手势)来推断应用用户的人口统计特征。机器学习算法的性能评估探讨了机器学习在预测中的应用,以加密货币的第二天收盘价为例。参与这些项目的学生将学习包括代码推荐系统,静态程序分析,程序转换,机器学习中的经典分类技术(例如,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammad Nassehzadeh Tabrizi其他文献
Mohammad Nassehzadeh Tabrizi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammad Nassehzadeh Tabrizi', 18)}}的其他基金
REU Site: Software Testing and Analytics
REU 网站:软件测试和分析
- 批准号:
1560037 - 财政年份:2016
- 资助金额:
$ 38.13万 - 项目类别:
Standard Grant
Collaborative Project: Integration of Shared Presentation Virtual Space in STEM courses
合作项目:在 STEM 课程中集成共享演示虚拟空间
- 批准号:
0837543 - 财政年份:2009
- 资助金额:
$ 38.13万 - 项目类别:
Standard Grant
AOC Comprehensive Assessment of Online Course Delivery Systems
AOC 在线课程交付系统综合评估
- 批准号:
0525087 - 财政年份:2005
- 资助金额:
$ 38.13万 - 项目类别:
Standard Grant
相似国自然基金
新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
- 批准号:52172255
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
- 批准号:41340011
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Software Dependability Centric Research and Application
REU 站点:以软件可靠性为中心的研究和应用
- 批准号:
2349347 - 财政年份:2024
- 资助金额:
$ 38.13万 - 项目类别:
Standard Grant
REU SITE: CMU in Software Enginneering (REUSE)
REU 站点:CMU 软件工程(REUSE)
- 批准号:
2150217 - 财政年份:2022
- 资助金额:
$ 38.13万 - 项目类别:
Standard Grant
REU Site: Software Safety and Reliability: Research, Practice, and Innovation
REU 网站:软件安全性和可靠性:研究、实践和创新
- 批准号:
2050869 - 财政年份:2021
- 资助金额:
$ 38.13万 - 项目类别:
Standard Grant
REU Site: Interdisciplinary Research Experience on Accelerated Deep Learning through A Hardware-Software Collaborative Approach
REU 网站:通过硬件-软件协作方法加速深度学习的跨学科研究经验
- 批准号:
2051062 - 财政年份:2021
- 资助金额:
$ 38.13万 - 项目类别:
Standard Grant
REU Site: Hardware, Embedded Software, and Analytics for Environment Quality Monitoring
REU 站点:环境质量监测的硬件、嵌入式软件和分析
- 批准号:
1950082 - 财政年份:2020
- 资助金额:
$ 38.13万 - 项目类别:
Standard Grant
REU Site: Secure and Privacy-Preserving Cyber-Physical Systems: Software and Hardware Approaches
REU 网站:安全和隐私保护的网络物理系统:软件和硬件方法
- 批准号:
1852126 - 财政年份:2019
- 资助金额:
$ 38.13万 - 项目类别:
Standard Grant
CMU REU Site in Software Engineering (REUSE)
CMU REU 软件工程站点(REUSE)
- 批准号:
1852260 - 财政年份:2019
- 资助金额:
$ 38.13万 - 项目类别:
Standard Grant
REU Site: Software Safety and Reliability: Research and Application
REU 网站:软件安全与可靠性:研究与应用
- 批准号:
1757828 - 财政年份:2018
- 资助金额:
$ 38.13万 - 项目类别:
Standard Grant
REU Site: Software Assurance and Security in Emerging Technologies: Research Experience for Undergraduates
REU 网站:新兴技术中的软件保障和安全:本科生的研究经验
- 批准号:
1757773 - 财政年份:2018
- 资助金额:
$ 38.13万 - 项目类别:
Standard Grant
REU Site: Cultivating Next Generation Software Engineering Researchers
REU 网站:培养下一代软件工程研究人员
- 批准号:
1757680 - 财政年份:2018
- 资助金额:
$ 38.13万 - 项目类别:
Standard Grant