RUI: Applications of a Generalized Differential Equation Compartmental Model of Infectious Disease Transmission

RUI:传染病传播广义微分方程房室模型的应用

基本信息

  • 批准号:
    2052592
  • 负责人:
  • 金额:
    $ 22.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project concerns a novel class of mathematical models that quantify disease outbreaks by the total number of days people are infected with a disease. The goal of the project is to apply these models to answer open questions in public health and evolutionary biology. The models can provide a simple means to study how the differences in peoples’ recovery time from infection affects the evaluation of public health policies, disease interventions, and disease evolution. As proof of concept, the project will model historical disease outbreaks, such as measles, whooping cough, and influenza, and compare predictions to classical modeling approaches that are based on tracking the number of infected people. The results of the research are expected to contribute to both the information needed by public health officials to make informed decisions and the state of knowledge on disease evolution.This project will develop and apply a new class of differential equation compartmental models. This class of models is the first to consider an alternative assumption as to what quantifies the amount of disease in a population. By considering the quantity "person-days of infection" over "disease incidence," the new class of models enables the incorporation of higher statistical moments from latent and infectious period distributions into the rates that govern the dynamics of the model. The work aims to illustrate the straightforward, accurate, and readily interpretable properties of this new class of compartmental model and its application. The project will analyze questions such as 1) the interplay between health disparities and virulence evolution, 2) the impact of infectious period outliers on the cost-effectiveness of disease interventions, and 3) how host variation affects the evolutionary and epidemiology dynamics of infectious disease transmission. Essential in tackling these issues will be the use of mean-residual life theory and analysis techniques that include stability, cost-effectiveness, and evolutionary invasion analyses. The research will illustrate the utility of this new class of models, contribute to the information needed by public health officials to mitigate disease outbreaks, and contribute to the state of knowledge on disease evolution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及一类新的数学模型,通过人们感染某种疾病的总天数来量化疾病爆发。该项目的目标是应用这些模型来回答公共卫生和进化生物学中的公开问题。这些模型可以提供一种简单的方法来研究人们从感染中恢复的时间的差异如何影响公共卫生政策、疾病干预和疾病演变的评估。作为概念验证,该项目将对麻疹、百日咳和流感等历史疾病暴发进行建模,并将预测与基于跟踪感染人数的经典建模方法进行比较。这项研究的结果有望为公共卫生官员做出明智决策所需的信息和疾病进化的知识状况做出贡献。该项目将开发和应用一类新的微分方程式分区模型。这类模型首次考虑了另一种假设,即用什么来量化人群中的疾病数量。通过考虑“人-天感染”的数量而不是“疾病发病率”,这类新的模型能够将潜伏期和感染期分布的更高统计量结合到控制模型动态的比率中。这项工作旨在说明这类新的隔室模型及其应用的简单、准确和易于解释的性质。该项目将分析以下问题:1)健康差异和毒力进化之间的相互作用;2)感染期离群值对疾病干预措施成本效益的影响;3)宿主变异如何影响传染病传播的进化和流行病学动态。解决这些问题的关键将是使用平均剩余寿命理论和分析技术,包括稳定性、成本效益和进化入侵分析。这项研究将说明这类新模型的实用性,有助于公共卫生官员减少疾病爆发所需的信息,并有助于了解疾病演变的状况。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effect of screening on the health burden of chlamydia: An evaluation of compartmental models based on person-days of infection
  • DOI:
    10.3934/mbe.2023720
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Farrell,Jack;Spolyar,Owen;Greenhalgh,Scott
  • 通讯作者:
    Greenhalgh,Scott
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Greenhalgh其他文献

On preserving dissipativity properties of linear complementarity dynamical systems with the $$\theta $$ -method
  • DOI:
    10.1007/s00211-013-0553-5
  • 发表时间:
    2013-06-22
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Scott Greenhalgh;Vincent Acary;Bernard Brogliato
  • 通讯作者:
    Bernard Brogliato
Dynamic vaccination games and hybrid dynamical systems
  • DOI:
    10.1007/s11081-011-9174-y
  • 发表时间:
    2011-10-20
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Monica-Gabriela Cojocaru;Scott Greenhalgh
  • 通讯作者:
    Scott Greenhalgh

Scott Greenhalgh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

An Extended Generalized Hydrogen-bonding Model: Applications to Refrigerants for Refrigeration at Ultra-low temperatures
扩展的广义氢键模型:在超低温制冷剂中的应用
  • 批准号:
    23K03722
  • 财政年份:
    2023
  • 资助金额:
    $ 22.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multiplex Generalized Dot Product Graph networks: theory and applications
多重广义点积图网络:理论与应用
  • 批准号:
    2310881
  • 财政年份:
    2023
  • 资助金额:
    $ 22.53万
  • 项目类别:
    Standard Grant
Non-regular robust methods for locally stationary generalized unit root related processes and their applications to large-scale data
局部平稳广义单位根相关过程的非正则鲁棒方法及其在大规模数据中的应用
  • 批准号:
    23K11004
  • 财政年份:
    2023
  • 资助金额:
    $ 22.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploring Signal Detection via Multitaper Transfer Function Estimates: Extension to a Generalized Framework of Time Series Regression Models and Applications
通过多锥度传递函数估计探索信号检测:扩展到时间序列回归模型和应用的通用框架
  • 批准号:
    570341-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 22.53万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
  • 批准号:
    RGPIN-2019-05899
  • 财政年份:
    2022
  • 资助金额:
    $ 22.53万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Nash games concepts: existence, tractability and applications to population models
广义纳什博弈概念:存在性、易处理性及其在人口模型中的应用
  • 批准号:
    RGPIN-2017-04530
  • 财政年份:
    2022
  • 资助金额:
    $ 22.53万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100785
  • 财政年份:
    2021
  • 资助金额:
    $ 22.53万
  • 项目类别:
    Standard Grant
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
  • 批准号:
    RGPIN-2019-05899
  • 财政年份:
    2021
  • 资助金额:
    $ 22.53万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Nash games concepts: existence, tractability and applications to population models
广义纳什博弈概念:存在性、易处理性及其在人口模型中的应用
  • 批准号:
    RGPIN-2017-04530
  • 财政年份:
    2021
  • 资助金额:
    $ 22.53万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100791
  • 财政年份:
    2021
  • 资助金额:
    $ 22.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了