Scalable Population Genetic and Phylogenetic Inference Using Large Samples of Microbial Data
使用大样本微生物数据进行可扩展的群体遗传和系统发育推断
基本信息
- 批准号:2052653
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will enable us to more effectively use large amounts of DNA and other genomic data to study human history, natural selection, pathogen evolution, and other topics that are important to science and human well-being. Examples of the types of questions it addresses include: When did humans migrate out of Africa? How did polar bears fare during the last global warming event? Does being tall confer evolutionary advantages? What is the current status of the COVID-19 pandemic, and when will it end? Although definitively answering these questions is challenging, evolution furnishes clues about them in the form of genetic variation. These clues can be decoded using mathematical models to analyze DNA samples from current populations. The amount of available genetic data has increased dramatically in recent years, and consequently faster and more accurate analytical methods are needed to fully utilize these rich new sources of information. This project will develop those methods. In addition, it will facilitate the creation of new curriculum materials designed to educate students about quantitative genetics and computational biology.This project will develop new and scalable methods for phylogenetic and population genetic inference, with a particular focus on analyzing pathogen genetic data. Although these areas are already quite mature, historically many methods designed to analyze genetic data made modeling assumptions based on human biology and data availability. Such assumptions complicate efforts to study the genetics of species whose biology is very different from humans, even though these species can have important impacts on human health. This project addresses these shortcomings through: the creation of novel methods for phylogenetic inference which can adapt to the amount of phylogenetic signal present in the data; faster likelihood-based phylogenetic network inference methods which allow for horizontal gene transfer or other reticulate events; variational methods for rapidly inferring epidemiological parameters from pandemic data; and new applications of coalescent hidden Markov models which are faster and have less bias than existing methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将使我们能够更有效地利用大量的DNA和其他基因组数据来研究人类历史,自然选择,病原体进化以及其他对科学和人类福祉至关重要的主题。它所解决的问题类型的例子包括:人类何时从非洲迁移出来?北极熊在上一次全球变暖事件中表现如何?高个子会带来进化优势吗?COVID-19大流行的现状如何,何时结束?虽然明确回答这些问题具有挑战性,但进化以遗传变异的形式提供了有关它们的线索。这些线索可以使用数学模型来解码,以分析当前人群的DNA样本。近年来,可用的遗传数据量急剧增加,因此需要更快和更准确的分析方法来充分利用这些丰富的新信息来源。本项目将发展这些方法。此外,该项目还将促进创建新的课程材料,旨在教育学生了解数量遗传学和计算生物学。该项目将开发用于系统发育和群体遗传推断的新的可扩展方法,特别侧重于分析病原体遗传数据。虽然这些领域已经相当成熟,但历史上许多设计用于分析遗传数据的方法基于人类生物学和数据可用性进行建模假设。这种假设使研究生物学与人类非常不同的物种的遗传学的努力复杂化,即使这些物种对人类健康有重要影响。该项目通过以下方式解决这些缺点:创建新的系统发育推断方法,该方法可以适应数据中存在的系统发育信号的数量;更快的基于似然性的系统发育网络推断方法,该方法允许水平基因转移或其他网状事件;从大流行数据快速推断流行病学参数的变分方法;和新的应用结合隐马尔可夫模型,这是更快,有更少的偏见比现有的方法。这一奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust detection of natural selection using a probabilistic model of tree imbalance
使用树木不平衡的概率模型稳健地检测自然选择
- DOI:10.1093/genetics/iyac009
- 发表时间:2022
- 期刊:
- 影响因子:3.3
- 作者:Dilber, Enes;Terhorst, Jonathan;Gravel, ed., S.
- 通讯作者:Gravel, ed., S.
Rates of convergence in the two-island and isolation-with-migration models
两岛模型和迁移隔离模型的收敛率
- DOI:10.1016/j.tpb.2022.08.001
- 发表时间:2022
- 期刊:
- 影响因子:1.4
- 作者:Legried, Brandon;Terhorst, Jonathan
- 通讯作者:Terhorst, Jonathan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Terhorst其他文献
Conserving Endangered Species through Regulation of Urban Development: The Case of California Vernal Pools
通过城市发展监管来保护濒危物种:加州春池案例
- DOI:
10.3368/le.90.2.290 - 发表时间:
2014 - 期刊:
- 影响因子:1.4
- 作者:
David L. Sunding;Jonathan Terhorst - 通讯作者:
Jonathan Terhorst
Generalized Spacing-Statistics and a New Family of Non-Parametric Tests
广义间距统计和新的非参数检验系列
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Dan D. Erdmann;Jonathan Terhorst;Yun S. Song - 通讯作者:
Yun S. Song
Population histories of the Indigenous Adivasi and Sinhalese from Sri Lanka using whole genomes
利用全基因组解析斯里兰卡本土阿迪瓦西人和僧伽罗人的种群历史
- DOI:
10.1016/j.cub.2025.04.039 - 发表时间:
2025-06-09 - 期刊:
- 影响因子:7.500
- 作者:
Jose A. Urban Aragon;Esha Bandyopadhyay;Amali S. Fernando;Constanza de la Fuente Castro;Anjana H.J. Welikala;Arjun Biddanda;David Witonsky;Nathan Sander;Joanne T. Kotelawala;Nagarjuna Pasupuleti;Matthias Steinrücken;Gamini Adikari;Kamani Tennekoon;Aaron P. Ragsdale;Jonathan Terhorst;Ruwandi Ranasinghe;Niraj Rai;Maanasa Raghavan - 通讯作者:
Maanasa Raghavan
Changepoint Analysis for Efficient Variant Calling
有效变体调用的变点分析
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Adam Bloniarz;Ameet Talwalkar;Jonathan Terhorst;Michael I. Jordan;D. Patterson;Bin Yu;Yun S. Song - 通讯作者:
Yun S. Song
Accelerated Bayesian inference of population size history from recombining sequence data
从重组序列数据加速贝叶斯推断种群规模历史
- DOI:
10.1101/2024.03.25.586640 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jonathan Terhorst - 通讯作者:
Jonathan Terhorst
Jonathan Terhorst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
濒危植物翅果油树Meta-population及其形成机理的研究
- 批准号:30470296
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
- 批准号:
2334798 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
MOSS: A novel genetic technology for low-cost and rapid crop breeding in response to climate change and population booming
MOSS:一种用于低成本、快速作物育种的新型基因技术,以应对气候变化和人口激增
- 批准号:
10087723 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Collaborative R&D
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
- 批准号:
2334797 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Identifying genetic and sociodemographic determinants of susceptibility to infectious diseases in diverse population groups
确定不同人群中传染病易感性的遗传和社会人口学决定因素
- 批准号:
10795339 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Population genomics study of the cosmopolitan appendicularian Oikopleura dioica in northwest Pacific for uncovering population structure and genetic diversity
西北太平洋世界性阑尾动物 Oikopleura dioica 的种群基因组学研究,揭示种群结构和遗传多样性
- 批准号:
23K14236 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring the population genetic structure of Canadian populations for forensic human identity
探索加拿大人群的人群遗传结构以进行法医人类身份鉴定
- 批准号:
486985 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Miscellaneous Programs
Genetic basis of allopatric differentiation in the seas around Japan: population genomics based on multiple hybridization zones
日本周边海域异源分化的遗传基础:基于多个杂交区的群体基因组学
- 批准号:
22KJ0876 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Population genetic modeling of genetic variation for complex traits and diseases
复杂性状和疾病遗传变异的群体遗传模型
- 批准号:
10714605 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
A genome-wide genealogical framework for statistical and population genetic analysis
用于统计和群体遗传分析的全基因组谱系框架
- 批准号:
10658562 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Theory, Methods, and Resources for Understanding and Leveraging Spatial Variation in Population Genetic Data
理解和利用群体遗传数据空间变异的理论、方法和资源
- 批准号:
10623985 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别: