Spectral Properties, Cutoff, and Limit Profiles for Markov Chains

马尔可夫链的谱特性、截止和极限曲线

基本信息

  • 批准号:
    2052659
  • 负责人:
  • 金额:
    $ 22.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Markov chains are random processes that retain no memory of the past. Over a hundred years since they were firstly introduced, the study of Markov chains is critical to mathematics, physics, computer science, statistics, engineering, and bioinformatics. This project focuses on the study of the rate of convergence of a Markov chain to the stationary distribution. The study of specific examples of Markov chains has proven to be very useful in finding deep connections between rapid mixing and spatial properties of spin systems, in sampling, approximate counting algorithms and card shuffling.The project has five broad aims all directed towards understanding cutoff, developing old and new techniques, and on studying specific examples of Markov chains that could help develop a theory. The first program focuses on the study of random walks on random graph models via understanding their geometry. The second program concerns the study of interacting particle systems, such as the asymmetric exclusion process with open boundaries. The third program is focusing on the existence of cutoff for random walks on trees. The fourth program concerns the properties of Glauber dynamics for the Potts model and its differences from the Ising model. The fifth program addresses several questions about the mixing properties of random walks on matrix groups and general configuration spaces that consist of matrices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
马尔可夫链是不保留过去记忆的随机过程。自从马尔可夫链被首次引入以来的一百多年里,它的研究对数学,物理学,计算机科学,统计学,工程学和生物信息学至关重要。本计画主要研究马尔可夫链收敛到平稳分布的速度。研究马尔可夫链的具体例子已经被证明是非常有用的,在寻找快速混合和自旋系统的空间属性之间的深层联系,在采样,近似计数算法和洗牌。该项目有五个广泛的目标都指向理解截止,发展新老技术,并在研究马尔可夫链的具体例子,可以帮助发展一个理论。第一个程序的重点是通过理解随机图模型的几何结构来研究随机图模型上的随机游动。第二个程序涉及相互作用的粒子系统的研究,如开放边界的非对称排斥过程。第三个程序主要研究树上随机游动的截断存在性。 第四个程序是关于Potts模型的Glauber动力学性质及其与Ising模型的区别。第五个项目解决了关于矩阵群和由矩阵组成的一般配置空间上的随机游走的混合性质的几个问题。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Evrydiki Nestoridi其他文献

Evrydiki Nestoridi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Evrydiki Nestoridi', 18)}}的其他基金

Spectral Properties, Cutoff, and Limit Profiles for Markov Chains
马尔可夫链的谱特性、截止和极限曲线
  • 批准号:
    2346986
  • 财政年份:
    2023
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Standard Grant

相似海外基金

A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
  • 批准号:
    DP240102053
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Training Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Continuing Grant
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
  • 批准号:
    2343416
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了