Scale-Problems in Assimilating of Passive Microwave Observation into Coupled Models
被动微波观测同化到耦合模型中的尺度问题
基本信息
- 批准号:246146193
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project explores the use and value of passive L-band satellite observations for ensemble-based data assimilation with fully-coupled terrestrial system models for mesoscale catchments. Model resolutions are typically of the order of 100 m for land components and 1 km for the atmospheric component of such models, which is much smaller than for the satellite observations with typically tens of kilometers. Ensemble-based data assimilation requires the generation of synthetic observations from the terrestrial system model via an observation operator, which are compared with observations for the generation of the analysis ensemble. Since the model state does not necessarily include all information required for the observation operator, which is in large parts a radiative transfer model, missing information must be inferred from external data.The main objectives of the project are the development of a suitable observation operator, which is able to mimic L-Band satellite observations in the best possible way, and its use for the exploitation of such observations in the data assimilation context with the Terrestrial Systems Modeling Platform (TerrSysMP, Shrestha et al. 2014) coupled to the Parallelized Data Assimilation Framework (PDAF, Nerger et al. 2013). While Phase I focused mainly on the compilation of a flexible observation operator and its comparison with real observations, Phase II will pursue further improvements concerning the representation of vegetation by the observation operator and its operationalization, but mainly concentrate on its use for data assimilation. This includes (a) the quantification of biases between observations generated from the data assimilation model and observations both from the virtual and true reality, (b) data assimilation experiments which quantify the value of such observations given other observations (e.g. precipitation), and (c) pre-processing and filtering methods to better exploit the information content of the large-scale observations.
本项目探讨了无源l波段卫星观测在中尺度集水区与完全耦合的陆地系统模式的综合数据同化中的应用和价值。这种模式的陆地成分的模式分辨率通常为100米,大气成分的模式分辨率通常为1公里,这比卫星观测的分辨率要小得多,通常为几十公里。基于集合的数据同化需要通过观测算子从地面系统模型生成综合观测值,并将其与生成分析集合的观测值进行比较。由于模型状态不一定包括观测算子所需的所有信息,这在很大程度上是一个辐射传递模型,因此缺失的信息必须从外部数据中推断出来。该项目的主要目标是开发一种合适的观测算子,它能够以最好的方式模拟l波段卫星观测,并将其用于利用地面系统建模平台(TerrSysMP, Shrestha等人,2014年)和并行数据同化框架(PDAF, Nerger等人,2013年)在数据同化背景下利用这些观测。第一阶段主要关注灵活观测算子的编制及其与实际观测值的比较,第二阶段将进一步改进观测算子对植被的表示及其操作化,但主要关注其用于数据同化。这包括(a)量化由数据同化模型生成的观测值与虚拟现实和真实现实观测值之间的偏差,(b)数据同化实验,量化这些观测值在其他观测值(如降水)下的价值,以及(c)预处理和过滤方法,以更好地利用大尺度观测值的信息内容。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Clemens Simmer其他文献
Professor Dr. Clemens Simmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Clemens Simmer', 18)}}的其他基金
Polarimetric signatures of ice microphysical processes and their interpretation using in-situ observations and cloud modeling (POLICE)
冰微物理过程的偏振特征及其使用现场观测和云建模的解释(POLICE)
- 批准号:
408014771 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Priority Programmes
Model And Data Assimilation Framework Development
模型和数据同化框架开发
- 批准号:
246124254 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Units
Probabilistic online flood forecasting for flash flood prone catchments in lower mountain ranges
低山区山洪易发流域的概率在线洪水预报
- 批准号:
36862337 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Assimilation of passive microwave observations into atmospheric models
将被动微波观测同化到大气模型中
- 批准号:
22095172 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
Integral Radar Volume Descriptors for Quantitative Areal Precipitation
用于定量面积降水的积分雷达体积描述符
- 批准号:
5448302 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
- 批准号:
DP240101473 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
- 批准号:
FT230100154 - 财政年份:2024
- 资助金额:
-- - 项目类别:
ARC Future Fellowships
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
- 批准号:
2348475 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
- 批准号:
23K25504 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
- 批准号:
2349382 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant