Hydration Structures and Perturbed Hydrogen Bond Network in Salt Solutions by Advanced Ab Initio Molecular Dynamics and Electronic Structure Simulation Methods
通过先进的从头算分子动力学和电子结构模拟方法研究盐溶液中的水合结构和扰动氢键网络
基本信息
- 批准号:2053195
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports research and educational activities with an aim to advance our fundamental understanding of the physical and chemical properties of salt water. Salt water is ubiquitous on earth, and it plays important roles in many physiological and biological processes, such as signal transduction in living cells as well as protein solubility and folding. The precise picture of how water molecules arrange themselves and move around salt ions is prerequisite to understanding the properties of salt water. This requires a quantum mechanical modeling for both the electrons and nuclei of water and salt molecules. However, due to the high computational cost, current computational studies can only model salt water in small simulation boxes for short time periods, which makes it difficult to extract accurate information about the long-range effects of salt molecules on the molecular and electronic structures of water. This project seeks to build theoretical tools and a computational framework to solve this problem by using machine learning methods. Utilizing computationally intensive calculations for only a few configurations of salt water, the PI and his team will build efficient deep learning models that can model salt water in simulation boxes containing thousands of water molecules for long time scales. The resulting deep learning models will not only be computationally efficient, but they will also be able to yield accurate predictions with comparable accuracy to advanced, fully quantum mechanical calculations. Both the microscopic and macroscopic properties of salt water will be accurately predicted by this approach and compared with experimental data.The participating postdocs and graduate students will carry out cutting-edge, interdisciplinary research based on advanced molecular dynamics simulations and machine learning techniques in the fields of condensed matter theory and quantum chemistry. Accurate deep learning models of salt solutions will be developed and distributed to the computational materials community. An outreach activity that explores the science of water will be developed and presented to high school students in New Jersey.TECHNICAL SUMMARYThis award supports research and educational activities that are aimed at understanding the hydration structure of important salt aqueous solutions and exploring how the hydrated ions will affect the hydrogen-bond network of liquid water. Ab initio molecular dynamics simulations based on density functional theory provide an ideal framework to study salt water from first principles. However, accurate predictions of salt water properties require a high-level functional approximation, and nuclear quantum effect should be taken into account due to the small mass of the proton. Accordingly, accurate first-principles calculations of salt water are computationally very expensive and cannot be applied to study the long-range effect of hydrated ions on the water structure. This PI and his team will overcome these computational challenges by combined deep learning techniques and advanced density functional theory calculations. Efficient deep molecular dynamics models of salt solutions will be built on Feynman path integral ab initio molecular dynamics simulations based on the hybrid meta-GGA SCAN0 density functional. Using deep learning models, molecular dynamics simulations of salt water can be performed in a simulation box containing thousands of water molecules at the nanosecond time scale, with a level of accuracy comparable to direct density functional theory calculations. With this powerful approach, the converged thermodynamic properties such as diffusivities and molecular structure in salt water can be accurately predicted and studied. Using the molecular trajectories of salt water, the electronic properties will also be modeled by deep learning techniques and compared to available experimental results.The participating postdocs and graduate students will carry out cutting-edge, interdisciplinary research based on advanced ab initio molecular dynamics simulations and machine learning techniques in the fields of condensed matter theory and quantum chemistry. Accurate deep learning models of salt solutions will be developed and distributed to the computational materials community. An outreach activity that explores the science of water will be developed and presented to high school students in New Jersey.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持研究和教育活动,旨在促进我们对盐水物理和化学性质的基本理解。盐水在地球上普遍存在,它在许多生理和生物过程中起着重要作用,如活细胞的信号转导以及蛋白质的溶解和折叠。水分子如何排列和围绕盐离子移动的精确图像是理解盐水性质的先决条件。这需要对水和盐分子的电子和原子核进行量子力学建模。然而,由于计算成本高,目前的计算研究只能在短时间内在小模拟箱中模拟盐水,这使得难以提取有关盐分子对水的分子和电子结构的长期影响的准确信息。该项目旨在建立理论工具和计算框架,通过使用机器学习方法来解决这个问题。PI和他的团队将利用计算密集型计算仅对盐水的几种配置进行计算,构建高效的深度学习模型,可以在包含数千个水分子的模拟盒中对盐水进行长时间模拟。由此产生的深度学习模型不仅计算效率高,而且还能够产生准确的预测,其准确度可与先进的完全量子力学计算相媲美。通过这种方法,可以准确预测盐水的微观和宏观性质,并与实验数据进行比较。参与的博士后和研究生将在凝聚态理论和量子化学领域开展基于先进分子动力学模拟和机器学习技术的前沿跨学科研究。盐溶液的精确深度学习模型将被开发并分发给计算材料社区。一个探索水科学的推广活动将在新泽西开发并提交给高中学生。技术总结该奖项支持旨在了解重要盐水溶液的水合结构和探索水合离子如何影响液态水的氢键网络的研究和教育活动。基于密度泛函理论的从头算分子动力学模拟为从第一性原理研究盐水提供了一个理想的框架。然而,盐水性质的准确预测需要高水平的函数近似,并且由于质子的质量小,核量子效应应该被考虑在内。因此,盐水的精确第一原理计算在计算上非常昂贵,并且不能应用于研究水合离子对水结构的长期影响。这位PI和他的团队将通过结合深度学习技术和先进的密度泛函理论计算来克服这些计算挑战。基于混合元GGA SCAN0密度泛函的Feynman路径积分从头算分子动力学模拟,将建立有效的盐溶液深部分子动力学模型。使用深度学习模型,盐水的分子动力学模拟可以在纳秒时间尺度下在包含数千个水分子的模拟盒中进行,其准确度可与直接密度泛函理论计算相媲美。通过这种强大的方法,收敛的热力学性质,如扩散系数和分子结构在盐水中可以准确地预测和研究。利用盐水的分子轨迹,通过深度学习技术对电子性质进行建模,并与现有的实验结果进行比较。参与的博士后和研究生将在凝聚态理论和量子化学领域开展基于先进从头算分子动力学模拟和机器学习技术的前沿跨学科研究。盐溶液的精确深度学习模型将被开发并分发给计算材料社区。一个探索水科学的推广活动将被开发并提交给新泽西的高中生。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DeePKS + ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials
DeePKS ABACUS 作为昂贵的量子力学模型和机器学习潜力之间的桥梁
- DOI:10.1021/acs.jpca.2c05000
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wenfei Li;Qi Ou;Yixiao Chen;Yu Cao;Renxi Liu;Chunyi Zhang;Daye Zheng;Chun Cai;Xifan Wu;Han Wang;Mohan Chen;Linfeng Zhang
- 通讯作者:Linfeng Zhang
Convert Widespread Paraelectric Perovskite to Ferroelectrics
将广泛使用的顺电钙钛矿转化为铁电材料
- DOI:10.1103/physrevlett.128.197601
- 发表时间:2022
- 期刊:
- 影响因子:8.6
- 作者:Wang, Hongwei;Tang, Fujie;Stengel, Massimiliano;Xiang, Hongjun;An, Qi;Low, Tony;Wu, Xifan
- 通讯作者:Wu, Xifan
Exploring the impact of ions on oxygen K-edge X-ray absorption spectroscopy in NaCl solution using the GW-Bethe-Salpeter-equation approach
使用 GW-Bethe-Salpeter 方程方法探索 NaCl 溶液中离子对氧 K 边 X 射线吸收光谱的影响
- DOI:10.1063/5.0167999
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Tang, Fujie;Shi, Kefeng;Wu, Xifan
- 通讯作者:Wu, Xifan
Structural and dynamic properties of solvated hydroxide and hydronium ions in water from ab initio modeling
从头开始建模水中溶剂化氢氧根和水合氢离子的结构和动态特性
- DOI:10.1063/5.0094944
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Liu, Renxi;Zhang, Chunyi;Liang, Xinyuan;Liu, Jianchuan;Wu, Xifan;Chen, Mohan
- 通讯作者:Chen, Mohan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xifan Wu其他文献
Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations
第一性原理计算得出的 X 射线发射光谱中液态水氢键环境的特征
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:7.5
- 作者:
Huaze Shen;Mohan Chen;Zhaoru Sun;Limei Xu;E. Wang;Xifan Wu - 通讯作者:
Xifan Wu
The effect of the geometric factor on theV-Icurve of Tl2212 film
几何因素对Tl2212薄膜V-I曲线的影响
- DOI:
10.1088/0953-8984/13/30/306 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
S. Ding;Yaohua Liu;Xifan Wu;F. Lin;Z. Wang;L. Qiu - 通讯作者:
L. Qiu
A study of the memory effect in ultra-pure YBa2Cu3O6.993
超纯YBa2Cu3O6.993记忆效应的研究
- DOI:
10.1088/0953-2048/15/6/314 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
H. Luo;Xifan Wu;J. Shi;S. Ding - 通讯作者:
S. Ding
Importance of van der Waals effects on the hydration of metal ions from the Hofmeister series.
范德华效应对霍夫迈斯特系列金属离子水合的重要性。
- DOI:
10.1063/1.5086939 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Liying Zhou;Jianhang Xu;Limei Xu;Xifan Wu - 通讯作者:
Xifan Wu
Deep neural network for Wannier function centers
Wannier 功能中心的深度神经网络
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Linfeng Zhang;Mohan Chen;Xifan Wu;Han Wang;E. Weinan;R. Car - 通讯作者:
R. Car
Xifan Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xifan Wu', 18)}}的其他基金
CAREER: Bridging spectroscopy measurement and molecular structures in H-bonded materials by advanced ab initio theories
职业:通过先进的从头算理论桥联光谱测量和氢键材料的分子结构
- 批准号:
1552287 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似海外基金
Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
- 批准号:
2593424 - 财政年份:2025
- 资助金额:
$ 36万 - 项目类别:
Studentship
Optimisation of Buildable Structures for 3D Concrete Printing
3D 混凝土打印可建造结构的优化
- 批准号:
DP240101708 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Discovery Projects
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Tunable Tensegrity Structures and Metamaterials
可调谐张拉整体结构和超材料
- 批准号:
2323276 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
- 批准号:
2333630 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
- 批准号:
2330957 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: High-Resolution Hybrid Printing of Wearable Heaters with Shape-Changeable Structures
职业:具有可变形结构的可穿戴加热器的高分辨率混合打印
- 批准号:
2340414 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Development of an entirely Lagrangian hydro-elastoviscoplastic FSI solver for design of resilient ocean/coastal structures
开发完全拉格朗日水弹粘塑性 FSI 求解器,用于弹性海洋/沿海结构的设计
- 批准号:
24K07680 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)