Collaborative Research: Langevin Markov Chain Monte Carlo Methods for Machine Learning

合作研究:用于机器学习的朗之万马尔可夫链蒙特卡罗方法

基本信息

  • 批准号:
    2053454
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The research in this project will focus on a particular class of algorithms for machine learning and data science. In particular, the investigators consider the large class of Markov Chain Monte Carlo (MCMC) methods which arise in several contexts in machine learning and data science. The project will develop new algorithms within the subclass called Langevin MCMC methods. These new algorithms will be scalable to high dimensions and large datasets and will be faster than traditional ones. The features of scalability and fast convergence are important for use in Bayesian statistical inference as well as in non-convex stochastic optimization methods for machine learning. The algorithms will allow efficient training and calibration of predictive machine learning models from large-scale data and have a direct impact on a broad range of data-driven application areas from information technology to computer vision. Graduate students will be trained and involved in research. In this project, the PIs investigate a new class of algorithms within the class of Langevin MCMC methods. These algorithms can be applied in three contexts of machine learning and data science. First, they can be used for Bayesian (learning) inference problems with high-dimensional models, where the objective is to sample from a posterior distribution given a prior distribution on the parameter space and the likelihood of the observed data. Second, they can be used for solving stochastic non-convex optimization problems including the challenging problems arising in deep learning. Third, they arise in modeling and approximating workhorse algorithms in data science such as stochastic gradient descent methods. By leveraging out the connections between stochastic gradient algorithms and MCMC algorithms, the proposed approach results in a new class of stochastic gradient algorithms called Hamiltonian Accelerated Stochastic Gradient that can outperform existing methods in deep learning practice. A first goal of the project is to study theoretical convergence properties of the proposed algorithms further to fill out the current gap between theory and practice, as well as to develop new scalable algorithms that can extend the existing framework. A second goal is to investigate existing Langevin algorithms further to provide non-asymptotic rigorous performance guarantees relevant to machine learning and data science practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的研究将专注于机器学习和数据科学的特定算法。特别是,研究人员考虑了在机器学习和数据科学中出现的大量马尔可夫链蒙特卡罗(MCMC)方法。该项目将在称为Langevin MCMC方法的子类中开发新算法。这些新算法将可扩展到高维和大型数据集,并且比传统算法更快。可扩展性和快速收敛的特性对于贝叶斯统计推断以及机器学习的非凸随机优化方法都很重要。这些算法将允许从大规模数据中有效训练和校准预测机器学习模型,并对从信息技术到计算机视觉的广泛数据驱动应用领域产生直接影响。 研究生将接受培训并参与研究。在这个项目中,PI研究了Langevin MCMC方法中的一类新算法。 这些算法可以应用于机器学习和数据科学的三种背景下。首先,它们可以用于高维模型的贝叶斯(学习)推理问题,其目标是从参数空间上的先验分布和观察数据的可能性的后验分布中进行采样。其次,它们可用于解决随机非凸优化问题,包括深度学习中出现的挑战性问题。第三,它们出现在数据科学中的建模和近似算法中,如随机梯度下降方法。通过利用随机梯度算法和MCMC算法之间的联系,该方法产生了一类新的随机梯度算法,称为Hamiltonian Accelerated Stochastic Gradient,可以在深度学习实践中优于现有方法。该项目的第一个目标是进一步研究所提出的算法的理论收敛特性,以填补目前理论与实践之间的差距,以及开发新的可扩展算法,可以扩展现有的框架。第二个目标是进一步研究现有的Langevin算法,为机器学习和数据科学实践提供非渐近的严格性能保证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approximate Variational Estimation for a Model of Network Formation
  • DOI:
    10.1162/rest_a_01023
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    8
  • 作者:
    A. Mele;Lingjiong Zhu
  • 通讯作者:
    A. Mele;Lingjiong Zhu
Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and Momentum-Based Acceleration
  • DOI:
    10.1287/opre.2021.2162
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuefeng Gao;M. Gürbüzbalaban;Lingjiong Zhu
  • 通讯作者:
    Xuefeng Gao;M. Gürbüzbalaban;Lingjiong Zhu
Algorithmic Stability of Heavy-Tailed Stochastic Gradient Descent on Least Squares
  • DOI:
    10.48550/arxiv.2206.01274
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anant Raj;Melih Barsbey;M. Gürbüzbalaban;Lingjiong Zhu;Umut Simsekli
  • 通讯作者:
    Anant Raj;Melih Barsbey;M. Gürbüzbalaban;Lingjiong Zhu;Umut Simsekli
Fractal Structure and Generalization Properties of Stochastic Optimization Algorithms
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Camuto;George Deligiannidis;Murat A. Erdogdu;Mert Gurbuzbalaban;Umut cSimcsekli;Lingjiong Zhu
  • 通讯作者:
    A. Camuto;George Deligiannidis;Murat A. Erdogdu;Mert Gurbuzbalaban;Umut cSimcsekli;Lingjiong Zhu
Robust Distributed Accelerated Stochastic Gradient Methods for Multi-Agent Networks
  • DOI:
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alireza Fallah;Mert Gurbuzbalaban;A. Ozdaglar;Umut Simsekli;Lingjiong Zhu
  • 通讯作者:
    Alireza Fallah;Mert Gurbuzbalaban;A. Ozdaglar;Umut Simsekli;Lingjiong Zhu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lingjiong Zhu其他文献

Variance Optimality of Empirical Martingale Simulation Estimators
经验鞅模拟估计量的方差最优性
  • DOI:
    10.2139/ssrn.4605168
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenyu Cui;Yanchu Liu;Ruodu Wang;Cai Wu;Lingjiong Zhu
  • 通讯作者:
    Lingjiong Zhu
A delayed dual risk model
  • DOI:
    10.1080/15326349.2016.1236694
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Lingjiong Zhu
  • 通讯作者:
    Lingjiong Zhu
Nonlinear Hawkes Processes
  • DOI:
  • 发表时间:
    2013-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingjiong Zhu
  • 通讯作者:
    Lingjiong Zhu
Asymptotic structure and singularities in constrained directed graphs
  • DOI:
    10.1016/j.spa.2015.06.004
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Aristoff;Lingjiong Zhu
  • 通讯作者:
    Lingjiong Zhu
Detecting and identifying arbitrage in the spot foreign exchange market
检测和识别即期外汇市场的套利
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenyu Cui;Wenhan Qian;Stephen Michael Taylor;Lingjiong Zhu
  • 通讯作者:
    Lingjiong Zhu

Lingjiong Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lingjiong Zhu', 18)}}的其他基金

The Heavy-Tailed Methods in Machine Learning
机器学习中的重尾方法
  • 批准号:
    2208303
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Self-Exciting Point Processes and Their Applications
自激点过程及其应用
  • 批准号:
    1613164
  • 财政年份:
    2016
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
  • 批准号:
    DE240100161
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
  • 批准号:
    2902365
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
  • 批准号:
    EP/Y031962/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
  • 批准号:
    EP/Y033124/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
  • 批准号:
    EP/Y033183/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
  • 批准号:
    NE/Y005457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了