The Heavy-Tailed Methods in Machine Learning
机器学习中的重尾方法
基本信息
- 批准号:2208303
- 负责人:
- 金额:$ 16.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Stochastic gradient descent and its variants are core algorithms for solving machine learning problems and work remarkably well in practice. However, a general theory that explains their success is still lacking. One popular approach is to impose structure on the gradient noise, typically modeled by Gaussian or other light-tailed distributions. However, many empirical and some recent theoretical works challenge these assumptions, calling for an understanding of heavy-tailed distributions and resulting phenomena in machine learning. In this project, a theoretical framework will be built towards understanding and explaining why and how heavy tailed distributions arise in popular machine learning algorithms, and how heavy tails can better explain their success, bridging a gap between theory and practice. The results derived from this project are expected to impact the mathematics community as well as developers and practitioners in the data science and machine learning communities. In this project, theoretical convergence properties and performance guarantees will be obtained for heavy-tailed stochastic gradient descent, their accelerated momentum-based methods, and continuous-time approximations. Further theoretical properties such as metastability will be studied to gain a further understanding of these heavy-tailed methods. A novel heavy-tailed adaptive Langevin algorithm and its variants will be developed and the theoretical guarantees will be studied for both sampling and non-convex stochastic optimization. Such an objective requires combining a broad set of ideas and mathematical tools from applied probability, continuous optimization, statistics and numerical analysis. Based on such mathematical developments the project will develop and study heavy-tailed algorithms with theoretical guarantees that can solve large-scale machine learning problems, ultimately building up a mathematical theory to explain the cause and implications of heavy-tailed distributions and other important phenomena that arise in machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随机梯度下降及其变体是解决机器学习问题的核心算法,在实践中效果非常好。然而,解释他们成功的一般理论仍然缺乏。一种流行的方法是在梯度噪声上施加结构,通常由高斯分布或其他光尾分布建模。然而,许多经验和一些最近的理论工作挑战这些假设,呼吁理解重尾分布和机器学习中的现象。在这个项目中,将建立一个理论框架,以理解和解释为什么以及如何在流行的机器学习算法中出现重尾分布,以及重尾如何更好地解释它们的成功,弥合理论与实践之间的差距。该项目的成果预计将影响数学界以及数据科学和机器学习界的开发人员和从业人员。 在这个项目中,理论收敛特性和性能保证将获得重尾随机梯度下降,他们的加速动量为基础的方法,和连续时间近似。进一步的理论性质,如亚稳态将被研究,以获得这些重尾方法的进一步理解。一种新的重尾自适应Langevin算法及其变种将开发和理论保证将研究采样和非凸随机优化。这样一个目标需要结合广泛的思想和数学工具,从应用概率,连续优化,统计和数值分析。基于这样的数学发展,该项目将开发和研究具有理论保证的重尾算法,这些算法可以解决大规模机器学习问题,最终建立了一个数学理论来解释重-该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Distributed Accelerated Stochastic Gradient Methods for Multi-Agent Networks
- DOI:
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Alireza Fallah;Mert Gurbuzbalaban;A. Ozdaglar;Umut Simsekli;Lingjiong Zhu
- 通讯作者:Alireza Fallah;Mert Gurbuzbalaban;A. Ozdaglar;Umut Simsekli;Lingjiong Zhu
Approximate Variational Estimation for a Model of Network Formation
- DOI:10.1162/rest_a_01023
- 发表时间:2017-02
- 期刊:
- 影响因子:8
- 作者:A. Mele;Lingjiong Zhu
- 通讯作者:A. Mele;Lingjiong Zhu
Stocking under random demand and product variety: Exact models and heuristics
随机需求和产品品种下的库存:精确模型和启发法
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:5
- 作者:Ghosh, Vashkar;Paul, Anand;Zhu, Lingjiong
- 通讯作者:Zhu, Lingjiong
Algorithmic Stability of Heavy-Tailed Stochastic Gradient Descent on Least Squares
- DOI:10.48550/arxiv.2206.01274
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Anant Raj;Melih Barsbey;M. Gürbüzbalaban;Lingjiong Zhu;Umut Simsekli
- 通讯作者:Anant Raj;Melih Barsbey;M. Gürbüzbalaban;Lingjiong Zhu;Umut Simsekli
Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and Momentum-Based Acceleration
- DOI:10.1287/opre.2021.2162
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:Xuefeng Gao;M. Gürbüzbalaban;Lingjiong Zhu
- 通讯作者:Xuefeng Gao;M. Gürbüzbalaban;Lingjiong Zhu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lingjiong Zhu其他文献
Variance Optimality of Empirical Martingale Simulation Estimators
经验鞅模拟估计量的方差最优性
- DOI:
10.2139/ssrn.4605168 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhenyu Cui;Yanchu Liu;Ruodu Wang;Cai Wu;Lingjiong Zhu - 通讯作者:
Lingjiong Zhu
A delayed dual risk model
- DOI:
10.1080/15326349.2016.1236694 - 发表时间:
2017-01 - 期刊:
- 影响因子:0.7
- 作者:
Lingjiong Zhu - 通讯作者:
Lingjiong Zhu
Nonlinear Hawkes Processes
- DOI:
- 发表时间:
2013-04 - 期刊:
- 影响因子:0
- 作者:
Lingjiong Zhu - 通讯作者:
Lingjiong Zhu
Asymptotic structure and singularities in constrained directed graphs
- DOI:
10.1016/j.spa.2015.06.004 - 发表时间:
2015-11-01 - 期刊:
- 影响因子:
- 作者:
David Aristoff;Lingjiong Zhu - 通讯作者:
Lingjiong Zhu
Detecting and identifying arbitrage in the spot foreign exchange market
检测和识别即期外汇市场的套利
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Zhenyu Cui;Wenhan Qian;Stephen Michael Taylor;Lingjiong Zhu - 通讯作者:
Lingjiong Zhu
Lingjiong Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lingjiong Zhu', 18)}}的其他基金
Collaborative Research: Langevin Markov Chain Monte Carlo Methods for Machine Learning
合作研究:用于机器学习的朗之万马尔可夫链蒙特卡罗方法
- 批准号:
2053454 - 财政年份:2021
- 资助金额:
$ 16.35万 - 项目类别:
Standard Grant
Self-Exciting Point Processes and Their Applications
自激点过程及其应用
- 批准号:
1613164 - 财政年份:2016
- 资助金额:
$ 16.35万 - 项目类别:
Standard Grant
相似海外基金
NSF-BSF: Real-Time Robust Estimation and Stochastic Control for Dynamic Systems with Additive Heavy-Tailed Uncertainties
NSF-BSF:具有加性重尾不确定性的动态系统的实时鲁棒估计和随机控制
- 批准号:
2317583 - 财政年份:2023
- 资助金额:
$ 16.35万 - 项目类别:
Standard Grant
Deep Wave Probing and Imaging of Heavy Tailed Fabric
重尾织物的深波探测和成像
- 批准号:
2308389 - 财政年份:2023
- 资助金额:
$ 16.35万 - 项目类别:
Standard Grant
Structure and assembly of dsDNA tailed bacteriophages
双链 DNA 尾噬菌体的结构和组装
- 批准号:
10708742 - 财政年份:2022
- 资助金额:
$ 16.35万 - 项目类别:
Genomics of extinction, reintroduction and recovery of white-tailed eagles (Haliaeetus albicilla) on the British Isles
不列颠群岛白尾海雕 (Haliaeetus albicilla) 灭绝、重新引入和恢复的基因组学
- 批准号:
2753578 - 财政年份:2022
- 资助金额:
$ 16.35万 - 项目类别:
Studentship
Genomics of extinction, reintroduction and recovery of white-tailed eagles (Haliaeetus albicilla) on the British Isles
不列颠群岛白尾海雕 (Haliaeetus albicilla) 灭绝、重新引入和恢复的基因组学
- 批准号:
2881740 - 财政年份:2022
- 资助金额:
$ 16.35万 - 项目类别:
Studentship
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
- 批准号:
RGPIN-2018-04008 - 财政年份:2022
- 资助金额:
$ 16.35万 - 项目类别:
Discovery Grants Program - Individual
Suppression of Host-Seeking Ixodes scapularis Abundances and Interruption of Pathogen Transmission Through Orally Delivered Systemic Acaricide Treatment of White-tailed Deer and Peromyscus spp.
通过口服全身杀螨剂治疗白尾鹿和白鼠属,抑制寻找宿主的肩胛硬蜱丰度并阻断病原体传播。
- 批准号:
10674587 - 财政年份:2022
- 资助金额:
$ 16.35万 - 项目类别:
Structure and assembly of dsDNA tailed bacteriophages
双链 DNA 尾噬菌体的结构和组装
- 批准号:
10382154 - 财政年份:2022
- 资助金额:
$ 16.35万 - 项目类别:
Suppression of Host-Seeking Ixodes scapularis Abundances and Interruption of Pathogen Transmission Through Orally Delivered Systemic Acaricide Treatment of White-tailed Deer and Peromyscus spp.
通过口服全身杀螨剂治疗白尾鹿和白鼠属,抑制寻找宿主的肩胛硬蜱丰度并阻断病原体传播。
- 批准号:
10572093 - 财政年份:2022
- 资助金额:
$ 16.35万 - 项目类别: