Collaborative Research: Langevin Markov Chain Monte Carlo Methods for Machine Learning
合作研究:用于机器学习的朗之万马尔可夫链蒙特卡罗方法
基本信息
- 批准号:2053485
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research in this project will focus on a particular class of algorithms for machine learning and data science. In particular, the investigators consider the large class of Markov Chain Monte Carlo (MCMC) methods which arise in several contexts in machine learning and data science. The project will develop new algorithms within the subclass called Langevin MCMC methods. These new algorithms will be scalable to high dimensions and large datasets and will be faster than traditional ones. The features of scalability and fast convergence are important for use in Bayesian statistical inference as well as in non-convex stochastic optimization methods for machine learning. The algorithms will allow efficient training and calibration of predictive machine learning models from large-scale data and have a direct impact on a broad range of data-driven application areas from information technology to computer vision. Graduate students will be trained and involved in research. In this project, the PIs investigate a new class of algorithms within the class of Langevin MCMC methods. These algorithms can be applied in three contexts of machine learning and data science. First, they can be used for Bayesian (learning) inference problems with high-dimensional models, where the objective is to sample from a posterior distribution given a prior distribution on the parameter space and the likelihood of the observed data. Second, they can be used for solving stochastic non-convex optimization problems including the challenging problems arising in deep learning. Third, they arise in modeling and approximating workhorse algorithms in data science such as stochastic gradient descent methods. By leveraging out the connections between stochastic gradient algorithms and MCMC algorithms, the proposed approach results in a new class of stochastic gradient algorithms called Hamiltonian Accelerated Stochastic Gradient that can outperform existing methods in deep learning practice. A first goal of the project is to study theoretical convergence properties of the proposed algorithms further to fill out the current gap between theory and practice, as well as to develop new scalable algorithms that can extend the existing framework. A second goal is to investigate existing Langevin algorithms further to provide non-asymptotic rigorous performance guarantees relevant to machine learning and data science practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的研究将专注于机器学习和数据科学的特定算法。特别是,研究人员考虑了在机器学习和数据科学中出现的大量马尔可夫链蒙特卡罗(MCMC)方法。该项目将在称为Langevin MCMC方法的子类中开发新算法。这些新算法将可扩展到高维和大型数据集,并且比传统算法更快。可扩展性和快速收敛的特性对于贝叶斯统计推断以及机器学习的非凸随机优化方法都很重要。这些算法将允许从大规模数据中有效训练和校准预测机器学习模型,并对从信息技术到计算机视觉的广泛数据驱动应用领域产生直接影响。 研究生将接受培训并参与研究。在这个项目中,PI研究了Langevin MCMC方法中的一类新算法。 这些算法可以应用于机器学习和数据科学的三种背景下。首先,它们可以用于高维模型的贝叶斯(学习)推理问题,其目标是从参数空间上的先验分布和观察数据的可能性的后验分布中进行采样。其次,它们可用于解决随机非凸优化问题,包括深度学习中出现的挑战性问题。第三,它们出现在数据科学中的建模和近似算法中,如随机梯度下降方法。通过利用随机梯度算法和MCMC算法之间的联系,该方法产生了一类新的随机梯度算法,称为Hamiltonian Accelerated Stochastic Gradient,可以在深度学习实践中优于现有方法。该项目的第一个目标是进一步研究所提出的算法的理论收敛特性,以填补目前理论与实践之间的差距,以及开发新的可扩展算法,可以扩展现有的框架。第二个目标是进一步研究现有的Langevin算法,为机器学习和数据科学实践提供非渐近的严格性能保证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differentially Private Accelerated Optimization Algorithms
- DOI:10.1137/20m1355847
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Nurdan Kuru;cS. .Ilker Birbil;Mert Gurbuzbalaban;S. Yıldırım
- 通讯作者:Nurdan Kuru;cS. .Ilker Birbil;Mert Gurbuzbalaban;S. Yıldırım
L-DQN: An Asynchronous Limited-Memory Distributed Quasi-Newton Method
- DOI:10.1109/cdc45484.2021.9682985
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Bugra Can;Saeed Soori;M. Dehnavi;M. Gürbüzbalaban
- 通讯作者:Bugra Can;Saeed Soori;M. Dehnavi;M. Gürbüzbalaban
A Stochastic Subgradient Method for Distributionally Robust Non-convex and Non-smooth Learning
- DOI:10.1007/s10957-022-02063-6
- 发表时间:2022-07
- 期刊:
- 影响因子:1.9
- 作者:M. Gürbüzbalaban;A. Ruszczynski;Landi Zhu
- 通讯作者:M. Gürbüzbalaban;A. Ruszczynski;Landi Zhu
Asymmetric Heavy Tails and Implicit Bias in Gaussian Noise Injections
- DOI:
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:A. Camuto;Xiaoyu Wang-;Lingjiong Zhu;Chris C. Holmes;M. Gürbüzbalaban;Umut Simsekli
- 通讯作者:A. Camuto;Xiaoyu Wang-;Lingjiong Zhu;Chris C. Holmes;M. Gürbüzbalaban;Umut Simsekli
Boundary Conditions for Linear Exit Time Gradient Trajectories Around Saddle Points: Analysis and Algorithm
- DOI:10.1109/tit.2022.3213607
- 发表时间:2021-01
- 期刊:
- 影响因子:2.5
- 作者:Rishabh Dixit;M. Gürbüzbalaban;W. Bajwa
- 通讯作者:Rishabh Dixit;M. Gürbüzbalaban;W. Bajwa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mert Gurbuzbalaban其他文献
Entropic Risk-Averse Generalized Momentum Methods
熵风险规避广义动量方法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Bugra Can;Mert Gurbuzbalaban - 通讯作者:
Mert Gurbuzbalaban
Non-Convex Optimization via Non-Reversible Stochastic Gradient Langevin Dynamics
通过不可逆随机梯度 Langevin Dynamics 进行非凸优化
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yuanhan Hu;Xiaoyu Wang;Xuefeng Gao;Mert Gurbuzbalaban;Lingjiong Zhu - 通讯作者:
Lingjiong Zhu
Mert Gurbuzbalaban的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mert Gurbuzbalaban', 18)}}的其他基金
SHF: Small: Communication-Efficient Distributed Algorithms for Machine Learning
SHF:小型:用于机器学习的通信高效分布式算法
- 批准号:
1814888 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Beyond With-replacement Sampling for Large-Scale Data Analysis and Optimization
超越大规模数据分析和优化的替换采样
- 批准号:
1723085 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
CyberCorps 服务奖学金:培养具有研究意识的网络领导者
- 批准号:
2336409 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant