SHF: Small: Communication-Efficient Distributed Algorithms for Machine Learning
SHF:小型:用于机器学习的通信高效分布式算法
基本信息
- 批准号:1814888
- 负责人:
- 金额:$ 46.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advances in sensing and processing technologies, communication capabilities and smart devices have enabled deployment of systems where a massive amount of data is collected and then processed in order to make decisions. The platforms that process this vast amount of data differ depending on the application. Among these, data centers are powerful platforms with vast computational resources where the collected data can be distributed over multiple processors that are all connected through a high-bandwidth network. Data can also be generated and processed in multi-agent systems which are made up of multiple interacting computational units (such as smart devices connected through wireless internet) with limited resources in terms of storage, power, computation, and communication capabilities. Data communication costs, which include the bandwidth and latency, often dominate floating point operation costs thus the performance of optimization algorithms when operating on large data sets is bounded by data communication for both multi-agent systems and data centers. This project proposes novel communication-efficient methods for a class of distributed optimization problems arising in large-scale data analysis and machine learning. The methods and techniques developed under the scope of this project contribute to the efficiency, practical performance and to the mathematical foundations of distributed optimization algorithms. The project is also developing a high-performance software framework that allows the dissemination of efficient domain-specific software and benchmarks.The project has three goals: the first goal is to improve the communication efficiency of existing algorithms for solving distributed optimization problems in the context of multi-agent systems, through a distributed algorithm for improving the total number of communications required in consensus iterations. The approach is based on leveraging the notion of the effective resistance of a link to identify bottleneck edges for communication purposes, and modifying the classical consensus averaging by taking effective resistances into account. The second goal is to develop communication-avoiding algorithms for data centers, through a framework that allows for reduction in communication by a tunable amount while keeping the arithmetic costs and bandwidth costs the same for a number of applications and existing algorithms. The third goal is to improve communication for hybrid systems which interpolate between multi-agents systems and data centers in terms of communication structure, using a framework that generates algorithm- and architecture-aware codes for reducing communication over these hybrid platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传感和处理技术、通信能力和智能设备的进步使部署系统成为可能,在这些系统中,收集了大量数据,然后进行处理,以便做出决策。处理这些海量数据的平台因应用程序的不同而不同。其中,数据中心是功能强大的平台,拥有巨大的计算资源,收集的数据可以分布在多个处理器上,这些处理器都通过高带宽网络连接。数据也可以在由多个交互计算单元(如通过无线互联网连接的智能设备)组成的多代理系统中生成和处理,这些计算单元在存储、功率、计算和通信能力方面具有有限的资源。数据通信成本,包括带宽和延迟,通常支配浮点运算成本,因此,当在大数据集上操作时,优化算法的性能受到多代理系统和数据中心的数据通信的限制。该项目针对大规模数据分析和机器学习中出现的一类分布式优化问题,提出了一种新的通信高效的方法。在本项目范围内开发的方法和技术有助于提高分布式优化算法的效率和实用性能,并为分布式优化算法奠定数学基础。该项目还在开发一个高性能的软件框架,允许传播高效的特定领域的软件和基准。该项目有三个目标:第一个目标是通过一个分布式算法来提高现有算法在多智能体系统中解决分布式优化问题的通信效率,以提高共识迭代所需的总通信次数。该方法基于利用链路的有效阻力的概念来识别用于通信目的的瓶颈边缘,并通过考虑有效阻力来修正经典的共识平均。第二个目标是通过一个框架为数据中心开发避免通信的算法,该框架允许减少可调的通信量,同时保持许多应用程序和现有算法的算术成本和带宽成本相同。第三个目标是在通信结构方面改善在多代理系统和数据中心之间插入的混合系统的通信,使用一个框架生成算法和架构感知代码,以减少在这些混合平台上的通信。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Accelerated Gradient Methods for Smooth Strongly Convex Functions
- DOI:10.1137/19m1244925
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:N. Aybat;Alireza Fallah;M. Gürbüzbalaban;A. Ozdaglar
- 通讯作者:N. Aybat;Alireza Fallah;M. Gürbüzbalaban;A. Ozdaglar
L-DQN: An Asynchronous Limited-Memory Distributed Quasi-Newton Method
- DOI:10.1109/cdc45484.2021.9682985
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Bugra Can;Saeed Soori;M. Dehnavi;M. Gürbüzbalaban
- 通讯作者:Bugra Can;Saeed Soori;M. Dehnavi;M. Gürbüzbalaban
DAve-QN: A Distributed Averaged Quasi-Newton Method with Local Superlinear Convergence Rate
- DOI:
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Saeed Soori;Konstantin Mischenko;Aryan Mokhtari;M. Dehnavi;Mert Gurbuzbalaban
- 通讯作者:Saeed Soori;Konstantin Mischenko;Aryan Mokhtari;M. Dehnavi;Mert Gurbuzbalaban
Breaking Reversibility Accelerates Langevin Dynamics for Non-Convex Optimization
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Xuefeng Gao;M. Gürbüzbalaban;Lingjiong Zhu
- 通讯作者:Xuefeng Gao;M. Gürbüzbalaban;Lingjiong Zhu
Differentially Private Accelerated Optimization Algorithms
- DOI:10.1137/20m1355847
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Nurdan Kuru;cS. .Ilker Birbil;Mert Gurbuzbalaban;S. Yıldırım
- 通讯作者:Nurdan Kuru;cS. .Ilker Birbil;Mert Gurbuzbalaban;S. Yıldırım
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mert Gurbuzbalaban其他文献
Entropic Risk-Averse Generalized Momentum Methods
熵风险规避广义动量方法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Bugra Can;Mert Gurbuzbalaban - 通讯作者:
Mert Gurbuzbalaban
Non-Convex Optimization via Non-Reversible Stochastic Gradient Langevin Dynamics
通过不可逆随机梯度 Langevin Dynamics 进行非凸优化
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yuanhan Hu;Xiaoyu Wang;Xuefeng Gao;Mert Gurbuzbalaban;Lingjiong Zhu - 通讯作者:
Lingjiong Zhu
Mert Gurbuzbalaban的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mert Gurbuzbalaban', 18)}}的其他基金
Collaborative Research: Langevin Markov Chain Monte Carlo Methods for Machine Learning
合作研究:用于机器学习的朗之万马尔可夫链蒙特卡罗方法
- 批准号:
2053485 - 财政年份:2021
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
Beyond With-replacement Sampling for Large-Scale Data Analysis and Optimization
超越大规模数据分析和优化的替换采样
- 批准号:
1723085 - 财政年份:2017
- 资助金额:
$ 46.44万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: SHF: Small: Reimagining Communication Bottlenecks in GNN Acceleration through Collaborative Locality Enhancement and Compression Co-Design
协作研究:SHF:小型:通过协作局部性增强和压缩协同设计重新想象 GNN 加速中的通信瓶颈
- 批准号:
2326494 - 财政年份:2023
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Reimagining Communication Bottlenecks in GNN Acceleration through Collaborative Locality Enhancement and Compression Co-Design
协作研究:SHF:小型:通过协作局部性增强和压缩协同设计重新想象 GNN 加速中的通信瓶颈
- 批准号:
2326495 - 财政年份:2023
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
SHF: Small: Communication Architecture Designs for Future Heterogeneous Systems
SHF:小型:未来异构系统的通信架构设计
- 批准号:
2135995 - 财政年份:2021
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
SHF: Small: Next-Generation Fully Integrated Power Management Circuits: Enabling Faster and More Efficient Computing and Communication in Smaller and Lower-Cost Mobile Electronics
SHF:小型:下一代全集成电源管理电路:在更小、更低成本的移动电子产品中实现更快、更高效的计算和通信
- 批准号:
2007154 - 财政年份:2020
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Automatically Enhancing Quality of Social Communication Channels to Support Software Developers and Improve Tool Reliability
SHF:小型:协作研究:自动增强社交沟通渠道的质量以支持软件开发人员并提高工具可靠性
- 批准号:
1813253 - 财政年份:2018
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
SHF: Small: Energy-Efficient and Reliable Communication with Silicon Photonics for Terascale Datacenters-on-Chip
SHF:小型:采用硅光子技术实现兆兆级片上数据中心的节能且可靠的通信
- 批准号:
1813370 - 财政年份:2018
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Automatically Enhancing Quality of Social Communication Channels to Support Software Developers and Improve Tool Reliability
SHF:小型:协作研究:自动增强社交沟通渠道的质量以支持软件开发人员并提高工具可靠性
- 批准号:
1812968 - 财政年份:2018
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Coupling Computation and Communication in FPGA-Enhanced Clouds and Clusters
SHF:小型:协作研究:FPGA 增强型云和集群中的耦合计算和通信
- 批准号:
1821431 - 财政年份:2017
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
SHF: Small: DeSCPar: Decoupled Supply-Compute Communication Management for Heterogeneous, Accelerator-Oriented Parallelism
SHF:小型:DeSCPar:面向异构、面向加速器的并行性的解耦供应计算通信管理
- 批准号:
1617732 - 财政年份:2016
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Coupling Computation and Communication in FPGA-Enhanced Clouds and Clusters
SHF:小型:协作研究:FPGA 增强型云和集群中的耦合计算和通信
- 批准号:
1618303 - 财政年份:2016
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant