I-Corps: Machine Learning-Based Diagnosis of Retinal Images with the Aim of Vision Loss Prevention
I-Corps:基于机器学习的视网膜图像诊断,旨在预防视力丧失
基本信息
- 批准号:2053424
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is to end preventable blindness by increasing access to early diagnostic testing. Utilizing a novel imaging technology and a proven machine learning algorithm, the device allows for point of care diagnosis in a primary care setting at less than half the current cost. By empowering frontline physicians to provide vision-saving eye exams without the need of an eye care specialist, the proposed technology may fundamentally change the current retinal exam landscape, resulting in more efficient and accessible diagnostic testing. This I-Corps Project will yield a portable Artificial Intelligence (AI)-based retinal imaging system consisting of two major components: (1) a hand held ophthalmic device to capture images of the patient's retina, and (2) a machine learning algorithm to classify images of the retina. The hardware solution provides high-resolution images of the retina. The infrared lighting is invisible to the human eye and eliminates the need for pupil dilation as is widely used in the state-of-art fundus imaging currently conducted by medical personnel. The current trained convolutional neural network yields an accuracy of 97% which is on par with the diagnostic accuracy of trained ophthalmologists.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目更广泛的影响/商业潜力是通过增加早期诊断测试的机会来结束可预防的失明。该设备利用新颖的成像技术和经过验证的机器学习算法,可以在初级保健环境中进行即时诊断,成本不到当前成本的一半。通过使一线医生能够在不需要眼科护理专家的情况下提供保护视力的眼科检查,所提出的技术可能会从根本上改变当前的视网膜检查格局,从而实现更高效、更方便的诊断测试。该 I-Corps 项目将产生一种基于人工智能 (AI) 的便携式视网膜成像系统,由两个主要组件组成:(1) 用于捕获患者视网膜图像的手持式眼科设备,以及 (2) 用于对视网膜图像进行分类的机器学习算法。该硬件解决方案提供高分辨率的视网膜图像。红外照明对人眼来说是不可见的,并且消除了瞳孔扩张的需要,而瞳孔扩张在目前由医务人员进行的最先进的眼底成像中广泛使用。目前训练有素的卷积神经网络的准确度为 97%,与训练有素的眼科医生的诊断准确度相当。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Tofighi Zavareh其他文献
An efficient estimation algorithm for the calibration of low-cost SS-OCT systems
用于校准低成本 SS-OCT 系统的有效估计算法
- DOI:
10.1109/isbi.2017.7950724 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Amir Tofighi Zavareh;O. Barajas;S. Hoyos - 通讯作者:
S. Hoyos
Systems and Methods for the Spectral Calibration of Swept Source Optical Coherence Tomography Systems
- DOI:
- 发表时间:
2019-09 - 期刊:
- 影响因子:0
- 作者:
Amir Tofighi Zavareh - 通讯作者:
Amir Tofighi Zavareh
Multivariate Analysis of Optoelectronic Detection Units for the Maximization of Photon Interaction with Implanted Sensing Material
光电检测单元的多变量分析,以最大化光子与植入传感材料的相互作用
- DOI:
10.1109/sensors52175.2022.9967117 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Briley M. James;Amir Tofighi Zavareh;M. Mcshane - 通讯作者:
M. Mcshane
Towards an on-chip signal processing solution for the online calibration of SS-OCT systems
用于 SS-OCT 系统在线校准的片上信号处理解决方案
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
O. Barajas;Amir Tofighi Zavareh;S. Hoyos - 通讯作者:
S. Hoyos
The Spectral Calibration of Swept-Source Optical Coherence Tomography Systems Using Unscented Kalman Filter
使用无迹卡尔曼滤波器的扫描源光学相干断层扫描系统的光谱校准
- DOI:
10.1109/biocas.2018.8584823 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Amir Tofighi Zavareh;S. Hoyos - 通讯作者:
S. Hoyos
Amir Tofighi Zavareh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Tofighi Zavareh', 18)}}的其他基金
I-Corps: A Novel Multi Wavelength Spectroscopy Technique for Assessing Tissue Health
I-Corps:一种用于评估组织健康的新型多波长光谱技术
- 批准号:
2224159 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
- 批准号:
2425300 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Machine Learning Risk Stratification Tool for Venous Thromboembolism
I-Corps:机器学习风险分层工具对静脉血栓栓塞的转化潜力
- 批准号:
2420417 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Machine Learning-Based Burn Injury Diagnosis and Care
I-Corps:基于机器学习的烧伤诊断和护理
- 批准号:
2326781 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: A Machine Learning Tool for Medical Device History and Recalls
I-Corps:用于医疗器械历史和召回的机器学习工具
- 批准号:
2334058 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Machine Learning Algorithm for Cardiovascular Disease Diagnosis
I-Corps:用于心血管疾病诊断的机器学习算法
- 批准号:
2331156 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: A machine learning model based on neural networks trained to recognize correlations and patterns that indicates possible medical complications
I-Corps:基于神经网络的机器学习模型,经过训练可以识别指示可能的医疗并发症的相关性和模式
- 批准号:
2321426 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Machine Learning and Bio-Signal Processing for Enhancing Empathy Training
I-Corps:用于增强同理心训练的机器学习和生物信号处理
- 批准号:
2237325 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Machine Learning Enhanced Automated Circuit Configuration and Evaluation of Power Converters
I-Corps:机器学习增强电源转换器的自动化电路配置和评估
- 批准号:
2245187 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Fast and Accurate Artificial Intelligence/Machine Learning Solutions to Inverse and Imaging Problems
I-Corps:针对逆向和成像问题的快速准确的人工智能/机器学习解决方案
- 批准号:
2224299 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Automated Pavement Evaluation Using Advanced Machine Learning
I-Corps:使用先进机器学习自动路面评估
- 批准号:
2229743 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant