Collaborative Research: Development of Realistic Seismic Input Motions for Improving the Resilience of Infrastructure to Earthquakes

合作研究:开发真实的地震输入运动以提高基础设施的抗震能力

基本信息

  • 批准号:
    2053694
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-11-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

The ability to reconstruct a seismic wave field in a domain of interest from sparsely-measured seismic ground motion data can help engineers to accurately model potential damage during earthquakes, improve safety, and reduce costs. Realistic seismic ground motions are essential for improving design and assessment of infrastructure by engineers, owners, and regulators. Although a large amount of ground motion data are available from modern sensors (e.g., accelerometers, optical cables, etc.), no established method can reconstruct the full 3 component (3C) incident wave field from the measurements in a three dimensional (3D) near-surface domain. This Disaster Resilience Research Grants (DRRG) project will address this need by developing a new method for reconstructing a full, 3C seismic wave field within a soil/rock volume adjacent to infrastructure from field measurements. The resulting 3C seismic wave field obtained by this approach accounts for local geology and variability, and can be used as a realistic seismic motion input into models of structures and infrastructure to assess their performance during earthquakes.Current use of one component (1C) motions for horizontal and vertical seismic shaking introduces a number of epistemic, modeling uncertainties into soil-structure interaction analysis. Regional-scale wave models need information about seismic sources, and deep and shallow geology that introduces large epistemic and aleatory, parametric uncertainties in the generated seismic motions. This project will develop a method for resolving these issues and providing accurate, realistic seismic motions that will improve modeling and simulation of earthquake-soil-structure interaction (ESSI) behavior. Consequently, design of infrastructure and lifelines and assessment of their earthquake response will be improved, resulting in increased resilience to seismic loading. The method will be integrated into a public domain program, Real-ESSI simulator (http://real-essi.us). The methodology will be scalable to various types of measurement modes (e.g., full translational 3C, 6C (translational 3C with rotational 3C), vertical-only 1C or the amplitude of full-3C motions measured by accelerometers at discrete locations, surface vibrations measured by vision-based sensors, or 3C motions-along-lines measured by optical cables). An advisory panel will provide feedback on the project to facilitate translation of the research into industrial practice. The PIs will develop online educational material on 'Inverse Modeling for ESSI Systems'. Such educational effort and material will help educate not only students working on this project, but also undergraduate and graduate students worldwide, as well as practicing engineers with interest in modeling of ESSI behavior.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从稀疏测量的地震地面运动数据中重建感兴趣区域中的地震波场的能力可以帮助工程师准确地模拟地震期间的潜在损害,提高安全性,并降低成本。真实的地震地面运动对于改善工程师、业主和监管机构对基础设施的设计和评估至关重要。虽然现代传感器(如加速度计、光缆等)可以获得大量的地面运动数据,但没有一种已建立的方法可以从三维(3D)近表面域中的测量重建完整的3分量(3C)入射波场。这一灾难恢复研究补助金(DRRG)项目将通过开发一种新的方法来满足这一需求,该方法可以根据现场测量在与基础设施相邻的土壤/岩石体积内重建完整的3C地震波场。通过这种方法得到的3C地震波场考虑了局部地质和可变性,可以作为结构和基础设施模型的真实地震运动输入,以评估其在地震中的性能。目前使用的水平和垂直地震动单分量(1C)运动在土-结构相互作用分析中引入了许多认知和建模的不确定性。区域尺度的波动模型需要关于震源的信息,以及在产生的地震运动中引入大的认知和情感、参数不确定性的深浅地质信息。该项目将开发一种方法来解决这些问题,并提供准确、真实的地震运动,这将改进地震-土壤-结构相互作用(ESSI)行为的建模和模拟。因此,基础设施和生命线的设计及其对地震反应的评估将得到改进,从而提高对地震荷载的复原力。该方法将被集成到一个公共领域程序Real-ESSI模拟器(http://real-essi.us).该方法将可扩展到各种类型的测量模式(例如,全平移3C、6C(具有旋转3C的平移3C)、仅垂直1C或由离散位置的加速计测量的全3C运动的幅度、由基于视觉的传感器测量的表面振动、或由光缆沿直线测量的3C运动)。一个咨询小组将就该项目提供反馈,以促进将研究转化为工业实践。PIS将开发关于“ESSI系统的逆向建模”的在线教育材料。这样的教育努力和材料不仅有助于教育参与该项目的学生,也有助于教育世界各地的本科生和研究生,以及对ESSI行为建模感兴趣的实践工程师。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep and Convolutional Neural Networks for identifying vertically-propagating incoming seismic wave motion into a heterogeneous, damped soil column
  • DOI:
    10.1016/j.soildyn.2022.107510
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Shashwat Maharjan;B. Guidio;A. Fathi;C. Jeong
  • 通讯作者:
    Shashwat Maharjan;B. Guidio;A. Fathi;C. Jeong
Multilevel Genetic Algorithm–Based Acoustic–Elastodynamic Imaging of Coupled Fluid–Solid Media to Detect an Underground Cavity
多级遗传算法 - 基于耦合流体 - 固体介质的声学 - 弹性动力成像来检测地下洞穴
  • DOI:
    10.1061/(asce)cp.1943-5487.0001058
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Guidio, Bruno;Nam, Boo Hyun;Jeong, Chanseok
  • 通讯作者:
    Jeong, Chanseok
Passive seismic inversion of SH wave input motions in a truncated domain
截断域内 SH 波输入运动的被动地震反演
  • DOI:
    10.1016/j.soildyn.2022.107263
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Guidio, Bruno;Jeremić, Boris;Guidio, Leandro;Jeong, Chanseok
  • 通讯作者:
    Jeong, Chanseok
Effective seismic force retrieval from surface measurement for SH-wave reconstruction
从表面测量中有效检索地震力以进行 SH 波重建
  • DOI:
    10.1016/j.soildyn.2022.107682
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Guidio, Bruno;Goh, Heedong;Jeong, Chanseok
  • 通讯作者:
    Jeong, Chanseok
Level-Set and Learn: Convolutional Neural Network for Classification of Elements to Identify an Arbitrary Number of Voids in a 2D Solid Using Elastic Waves
  • DOI:
    10.1061/jenmdt.emeng-6840
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Fazle Mahdi Pranto;Shashwat Maharjan;Chan-Ung Jeong
  • 通讯作者:
    Fazle Mahdi Pranto;Shashwat Maharjan;Chan-Ung Jeong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chanseok Jeong其他文献

On the reconstruction of the near-surface seismic motion
近地表地震运动的重建
  • DOI:
    10.1016/j.soildyn.2023.108414
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4
  • 作者:
    B. Guidio;H. Goh;L. Kallivokas;Chanseok Jeong
  • 通讯作者:
    Chanseok Jeong

Chanseok Jeong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chanseok Jeong', 18)}}的其他基金

Full-Waveform Inversion of Seismic Input Motions in a Truncated Domain
截断域中地震输入运动的全波形反演
  • 批准号:
    2044887
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Full-Waveform Inversion of Seismic Input Motions in a Truncated Domain
截断域中地震输入运动的全波形反演
  • 批准号:
    1855406
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331437
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337028
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337027
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331438
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
  • 批准号:
    2405548
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: HNDS-I. Mobility Data for Communities (MD4C): Uncovering Segregation, Climate Resilience, and Economic Development from Cell-Phone Records
合作研究:HNDS-I。
  • 批准号:
    2420945
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SBP: Collaborative Research: Improving Engagement with Professional Development Programs by Attending to Teachers' Psychosocial Experiences
SBP:协作研究:通过关注教师的社会心理体验来提高对专业发展计划的参与度
  • 批准号:
    2314254
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311878
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了