Collaborative Research: AI-Driven Multi-Scale Design of Materials under Processing Constraints
协作研究:人工智能驱动的加工约束下材料的多尺度设计
基本信息
- 批准号:2053840
- 负责人:
- 金额:$ 27.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this project is to improve the knowledge of materials design by developing a multi-scale methodology that combines physics-based models of thermo-mechanical processing and materials with artificial intelligence (AI) and machine learning (ML). The underlying hypothesis is that the metallic components can be designed to achieve targeted macro-scale properties and performance by optimizing the underlying microstructural features and processing parameters. The project will build design methodology that enables: (i) investigation of the effects of microstructures and processing parameters on macro-scale properties; and (ii) identification of multiple optimum material designs that provide desired macro-scale performance. The ability to optimize macro-scale properties by designing microstructures and processes will improve the performance of current and future engineering systems. Additionally, with the consideration of manufacturing constraints, this multi-scale design framework will not merely identify mathematical solutions, but the designs that will be manufacturable. The researched methods and results will be tested against the experimental data of a Titanium-Aluminum alloy. The societal impacts of the project will be on the economy, with performance improvement in metallic components and minimization of the time and costs associated with manufacturing. The gained knowledge will be disseminated to academia and industry with technical activities and open-access software tools. Additional deliverables of the project include curriculum development at both undergraduate and graduate levels, research and education experiences for students, and other outreach activities involving students and educators with a special focus on individuals from underrepresented groups.The overarching goal of this project is to advance knowledge in the design of metallic materials by developing a multi-scale optimization strategy that will be driven by the physics-based models of thermo-mechanical processing and microstructures, and AI/ML-based predictive modeling and knowledge discovery approaches. The research will address the inverse design problem that aims to optimize the thermo-mechanical processing parameters (i.e., strain rate, temperature, duration) to achieve desired microstructural features (i.e., crystallographic texture, grain morphology) and macro-scale properties by investigating the coupled, multi-scale, and high-dimensional interactions within the processing-(micro)structure-property chain. To achieve this goal, the project will develop physics-based models that enable explicit quantification of microstructural orientations and morphology (grain sizes and shapes), and an ML-guided feedback-aware identification strategy for key processing/(micro)-structure parameters, which will be subsequently explored by targeted sampling. The research will improve the understanding of inverse materials design by also integrating manufacturing constraints into the design framework and exploring multiple optimum material solutions that provide desired macro-scale properties. The physics-based and AI/ML-driven models, as well as the optimum results obtained by the multi-scale design framework, will be validated using the experimental processing, microstructure, and property data of a Titanium-Aluminum alloy. The education and outreach objectives of the project focus on training students and the future workforce to create new knowledge on computational and ML-driven design of materials, which will be supported with curriculum development and an extensive dissemination and outreach plan.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是通过开发一种多尺度方法,将热机械加工和材料的基于物理的模型与人工智能(AI)和机器学习(ML)相结合,来提高材料设计的知识。基本假设是,通过优化基本的微观结构特征和加工参数,可以设计金属部件以实现目标的宏观性能和性能。该项目将建立设计方法,使:(i)调查微观结构和加工参数对宏观尺度特性的影响;(ii)确定多种最佳材料设计,以提供所需的宏观尺度性能。通过设计微结构和工艺来优化宏观性能的能力将提高当前和未来工程系统的性能。此外,考虑到制造限制,这种多尺度设计框架不仅可以确定数学解决方案,还可以确定可制造的设计。研究方法和结果将与某钛铝合金的实验数据进行对比验证。该项目的社会影响将体现在经济上,金属部件的性能得到改善,与制造相关的时间和成本最小化。获得的知识将通过技术活动和开放获取的软件工具传播给学术界和工业界。该项目的其他可交付成果包括本科和研究生阶段的课程开发,学生的研究和教育经验,以及涉及学生和教育工作者的其他外展活动,特别关注来自代表性不足群体的个人。该项目的总体目标是通过开发多尺度优化策略来推进金属材料设计方面的知识,该策略将由基于物理的热机械加工和微观结构模型以及基于AI/ ml的预测建模和知识发现方法驱动。该研究将解决逆向设计问题,旨在通过研究加工-(微观)结构-性能链中的耦合、多尺度和高维相互作用,优化热机械加工参数(即应变速率、温度、持续时间),以实现所需的微观结构特征(即晶体织构、晶粒形貌)和宏观尺度性能。为了实现这一目标,该项目将开发基于物理的模型,使微观结构取向和形态(晶粒尺寸和形状)能够明确量化,并为关键加工/(微观)结构参数提供ml引导的反馈感知识别策略,随后将通过目标采样进行探索。该研究将通过将制造约束整合到设计框架中,并探索提供所需宏观尺度性能的多种最佳材料解决方案,提高对逆向材料设计的理解。基于物理和AI/ ml驱动的模型,以及通过多尺度设计框架获得的最佳结果,将使用钛铝合金的实验处理、微观结构和性能数据进行验证。该项目的教育和推广目标侧重于培养学生和未来的劳动力,以创造关于计算和机器学习驱动的材料设计的新知识,这将通过课程开发和广泛的传播和推广计划得到支持。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New Methodologies for Grain Boundary Detection in EBSD Data of Microstructures
微观结构 EBSD 数据中晶界检测的新方法
- DOI:10.2514/6.2022-1424
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Catania, Richard K.;Senthilnathan, Arulmurugan;Sions, John;Snyder, Kyle;Al-Ghaib, Huda;Zimmerman, Ben;Acar, Pinar
- 通讯作者:Acar, Pinar
Microstructure-Sensitive Material Design with Physics-Informed Neural Networks
- DOI:10.2514/6.2023-0539
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Md Mahmudul Hasan;Zekeriya Ender Eğer;Arulmurugan Senthilnathan;P. Acar
- 通讯作者:Md Mahmudul Hasan;Zekeriya Ender Eğer;Arulmurugan Senthilnathan;P. Acar
Data-Driven Multi-Scale Modeling and Optimization for Elastic Properties of Cubic Microstructures
- DOI:10.1007/s40192-022-00258-3
- 发表时间:2022-04-06
- 期刊:
- 影响因子:3.3
- 作者:Hasan, M.;Mao, Y.;Acar, P.
- 通讯作者:Acar, P.
Parameter Space Exploration of Cellular Mechanical Metamaterials Using Genetic Algorithms
- DOI:10.2514/1.j062864
- 发表时间:2023-06
- 期刊:
- 影响因子:2.5
- 作者:Sheng Liu;P. Acar
- 通讯作者:Sheng Liu;P. Acar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pinar Acar其他文献
Quantification of Aleatoric and Epistemic Uncertainty of Microstructures using Experiments and Markov Random Fields
使用实验和马尔可夫随机场量化微观结构的任意和认知不确定性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Matthew T. Long;Arulmurugan Senthilnathan;Pinar Acar - 通讯作者:
Pinar Acar
Sensitivity Assessment on Homogenized Stress–Strain Response of Ti-6Al-4V Alloy
Ti-6Al-4V 合金均匀应力-应变响应的敏感性评估
- DOI:
10.1007/s11837-023-06188-5 - 发表时间:
2023 - 期刊:
- 影响因子:2.6
- 作者:
Mohamed Elleithy;Hengduo Zhao;Pinar Acar - 通讯作者:
Pinar Acar
Design of polycrystalline metallic alloys under multi-scale uncertainty by connecting atomistic to meso-scale properties
通过连接原子与介观尺度特性来设计多尺度不确定性下的多晶金属合金
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:9.4
- 作者:
M. Billah;Pinar Acar - 通讯作者:
Pinar Acar
Sensitivity Analysis and Uncertainty Quantification for Crystal Plasticity Parameters of Ti-6Al-4V Alloy
Ti-6Al-4V合金晶体塑性参数的敏感性分析和不确定度量化
- DOI:
10.2514/6.2024-1233 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mohamed Elleithy;Pinar Acar - 通讯作者:
Pinar Acar
A Deep Learning Framework for Time-Series Processing-Microstructure-Property Prediction
用于时间序列处理-微观结构-性能预测的深度学习框架
- DOI:
10.1109/icmla58977.2023.00131 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuwei Mao;Mahmudul Hasan;C. Lee;Muhammed Nur Talha Kilic;Vishu Gupta;Wei;Alok N. Choudhary;Pinar Acar;Ankit Agrawal - 通讯作者:
Ankit Agrawal
Pinar Acar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pinar Acar', 18)}}的其他基金
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
- 批准号:
2236947 - 财政年份:2023
- 资助金额:
$ 27.24万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 27.24万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 27.24万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 27.24万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 27.24万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 27.24万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 27.24万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402947 - 财政年份:2024
- 资助金额:
$ 27.24万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 27.24万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411299 - 财政年份:2024
- 资助金额:
$ 27.24万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402946 - 财政年份:2024
- 资助金额:
$ 27.24万 - 项目类别:
Standard Grant