Study of spin photocurrent in 2D hybrid organic-inorganic perovskite multiple quantum wells

二维杂化有机-无机钙钛矿多量子阱中自旋光电流的研究

基本信息

  • 批准号:
    2054169
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Non-technical Abstract:Hybrid metal halide perovskites have emerged as a promising class of semiconductors with device applications in solar cells, light emitting diodes and transistors. These materials also have large spin-orbit coupling, which makes these perovskites a candidate for spintronic devices. Spintronics combines electronics with spin, an intrinsic property of elementary particles, to enable novel technologies such as energy efficient devices for data storage or advanced computing. Spintronic devices based on quantum wells made by alternating layers of inorganic semiconductors such as silicon or germanium are expensive to make by epitaxial growth. In contrast, a two-dimensional hybrid perovskite with a natural quantum well structure consisting of alternating organic and inorganic layers can be fabricated via low-cost, facile solution processing. Although perovskites meet several important prerequisites for viable spintronic devices, there is lack of fundamental understanding of the spin-related phenomena in this new type of quantum well. In this project, the research team will optically probe and manipulate spins in hybrid perovskite quantum wells. The project will yield a fundamental understanding of spin degree of freedom in these materials. This knowledge will help to develop guidelines for material synthesis and device engineering for efficient and cost-effective spintronic devices. Graduate and undergraduate students, particularly those from underrepresented groups, will participate in multi-level research activities. The general public will be involved through scientific exhibitions such as ‘EXPO Physics’ for middle and high school students and ‘Show-n-tell in Physics’ for elementary school students.Technical AbstractTwo-dimensional hybrid organic inorganic perovskites (2D-HOIPs) with a Ruddlesten-Popper layered structure have recently started transforming new fields. These materials have strong spin-orbit coupling, high-charge mobility, and an intrinsic quantum well structures with many interfaces and facile solution processability. Giant Rashba splitting was experimentally confirmed in these materials, highlighting their potential for cost-effective room temperature spintronic devices. However, a few key questions remain that need to be answered to clear the pathway to viable devices. The central question is how spin photocurrent is generated and manipulated in two-dimensional HOIP multiple quantum well. The goal of the project is to deepen the fundamental understanding of this new type of multiple quantum well by conducting a comprehensive study on spin photocurrent dependence on quantum well structure, crystal symmetry and imperfection. The quantum well structure in a HOIP can be easily tuned from pure two dimensional to quasi three dimensional by varying the number of inorganic layers. Hypothetically, the roles of excitons (dominant in two dimension) and free carriers (dominant in three dimension) will shift. The focus of this proposal is to characterize the difference of spin photocurrent behaviors in ‘excitonic’ and ‘free carrier’ quantum wells using photogalvanic spectroscopy. The objectives of the study are to measure spin photocurrent for free carriers and extract the information about Rashba/Dresselhaus effects, investigate the origin of spin-polarized current from excitons, and characterize the spin polarization of free and bound excitons through photogalvanic spectroscopy. The knowledge gained from this project is expected to complement the spin-photophysics well studied in two-dimensional electron gas quantum wells, and be informative to scientists working in optoelectronic and spintronics applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要:杂化金属卤化物钙钛矿已成为一类很有前途的半导体材料,在太阳能电池、发光二极管和晶体管等器件中有着广泛的应用。这些材料还具有较大的自旋轨道耦合,这使得这些钙钛矿成为自旋电子器件的候选材料。自旋电子学将电子学与基本粒子的固有特性——自旋结合起来,使数据存储或高级计算的节能设备等新技术成为可能。由无机半导体(如硅或锗)交替层制成的基于量子阱的自旋电子器件通过外延生长制造成本很高。相比之下,具有由有机层和无机层交替组成的天然量子阱结构的二维杂化钙钛矿可以通过低成本、简便的溶液处理来制造。尽管钙钛矿满足可行的自旋电子器件的几个重要先决条件,但在这种新型量子阱中缺乏对自旋相关现象的基本理解。在这个项目中,研究小组将光学探测和操纵混合钙钛矿量子阱中的自旋。该项目将产生对这些材料的自旋自由度的基本理解。这些知识将有助于为材料合成和高效、经济的自旋电子器件的器件工程制定指导方针。研究生和本科生,特别是来自代表性不足群体的学生,将参与多层次的研究活动。通过面向初高中学生的“EXPO物理”和面向小学生的“Show-n-tell in Physics”等科学展览,普通大众将参与其中。技术摘要:具有Ruddlesten-Popper层状结构的二维杂化有机无机钙钛矿(2D-HOIPs)近年来开始在新的领域进行改造。这些材料具有强的自旋轨道耦合、高电荷迁移率和具有多界面和易于溶液处理的本征量子阱结构。巨大的Rashba分裂在这些材料中得到了实验证实,突出了它们在具有成本效益的室温自旋电子器件中的潜力。然而,仍有几个关键问题需要解决,以扫清通往可行设备的道路。核心问题是如何在二维HOIP多量子阱中产生和控制自旋光电流。该项目的目标是通过全面研究自旋光电流对量子阱结构、晶体对称性和缺陷的依赖,加深对这种新型多量子阱的基本认识。通过改变无机层数,可以很容易地将HOIP中的量子阱结构从纯二维调谐到准三维。假设,激子(在二维中占主导地位)和自由载流子(在三维中占主导地位)的作用将发生变化。本研究的重点是利用光电光谱表征“激子”和“自由载流子”量子阱中自旋光电流行为的差异。本研究的目的是测量自由载流子的自旋光电流,提取Rashba/Dresselhaus效应的信息,研究激子自旋极化电流的来源,并通过光电光谱表征自由和束缚激子的自旋极化。从该项目中获得的知识有望补充在二维电子气量子阱中研究得很好的自旋光物理学,并为从事光电子和自旋电子学应用的科学家提供信息。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaomei Jiang其他文献

Cellular changes of tracheids and ray parenchyma cells from cambium to heartwood in Cunninghamia lanceolata
杉木管胞和射线薄壁细胞从形成层到心材的细胞变化
Enhanced ferro- and piezoelectric performances through interface control in BiFe0.99W0.01O3/BiFe0.95Mn0.05O3/BiFe0.99W0.01O3 thin film
  • DOI:
    doi: 10.1063/1.4998162
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Xiaomei Jiang;Jing Yan;Guangda Hu
  • 通讯作者:
    Guangda Hu
Complement networks in gene-edited pig xenotransplantation: enhancing transplant success and addressing organ shortage
  • DOI:
    10.1186/s12967-024-05136-4
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Yinglin Yuan;Yuanyuan Cui;Dayue Zhao;Yuan Yuan;Yanshuang Zhao;Danni Li;Xiaomei Jiang;Gaoping Zhao
  • 通讯作者:
    Gaoping Zhao
Constructing p-type substitution induced by Ca2+ in defective Na3V2-xCax(PO4)3/C wrapped with conductive CNTs for high-performance sodium-ion batteries.
在用导电碳纳米管包裹的缺陷 Na3V2-xCax(PO4)3/C 中构建由 Ca2 诱导的 p 型取代,用于高性能钠离子电池。
  • DOI:
    10.2139/ssrn.4171858
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Xiaomei Jiang;Changcheng Liu;Zeyi Tian;Shiqi Sun;Jiahao Li;Que Huang;Weiguo Cao;Yanjun Chen
  • 通讯作者:
    Yanjun Chen
Enhanced charge-transport in surfactant-free PbSe quantum dot films grown by a laser-assisted spray process
通过激光辅助喷涂工艺生长的无表面活性剂 PbSe 量子点薄膜增强电荷传输
  • DOI:
    10.1063/1.3233926
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    4
  • 作者:
    G. S. Dedigamuwa;J. Lewis;Jian Zhang;Xiaomei Jiang;P. Mukherjee;S. Witanachchi
  • 通讯作者:
    S. Witanachchi

Xiaomei Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

SPIN90在幽门螺杆菌空泡毒素VacA致病中的作用及机制研究
  • 批准号:
    82372269
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
解毒方抑制HIF-1α-Exosomal miR-130b-3p-SPIN90介导的巨噬细胞M2型极化改善肝癌免疫抑制微环境的作用机制
  • 批准号:
    82374540
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
SPIN1激活IL-10诱导M2巨噬细胞极化促进胃癌浸润转移的机制研究
  • 批准号:
    82103490
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Spin-Peierls化合物的分子设计策略及电操控自旋态研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    64 万元
  • 项目类别:
    面上项目
自旋为1的Spin-Peierls模型的量子相变研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目
SPIN1正反馈调控Hippo-YAP信号通路促胃癌侵袭转移的机制研究
  • 批准号:
    82060566
  • 批准年份:
    2020
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
ETS1-SPIN1-PI3K/Akt网络调控乳腺癌耐药的分子机制研究
  • 批准号:
    81902698
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
紧spin流形上Dirac方程及相关问题的研究
  • 批准号:
    11801499
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
血红素模型体系多自旋态可变电荷力场开发
  • 批准号:
    21873034
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
特殊和乐流形的霍奇理论与规范理论
  • 批准号:
    11801539
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
  • 批准号:
    EP/Y023250/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Research Grant
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Studentship
Charge-Spin Conversions and Nonreciprocal Transport in Chiral Materials
手性材料中的电荷自旋转换和不可逆输运
  • 批准号:
    2325147
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Picosecond superconductivity-driven spin-torques
皮秒超导驱动的自旋扭矩
  • 批准号:
    EP/Z000637/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Research Grant
High-Field Solid-State Dynamic Nuclear Polarization with Paramagnetic Systems Beyond Simple Spin 1/2
超越简单自旋的顺磁系统高场固态动态核极化 1/2
  • 批准号:
    2411584
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了