Analysis and Geometry of Free Boundaries
自由边界的分析和几何
基本信息
- 批准号:2054282
- 负责人:
- 金额:$ 19.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Partial Differential Equations (PDE) are the language of physics. In fact, the first partial differential equations naturally arose in physics when trying to describe the propagation of heat, the propagation of waves as well as electromagnetism. Many problems in engineering also rely on the theory of PDEs, as well as the ability to approximate their solutions. The scientific part of this project is concerned with the study of specific families of PDEs that model various physical phenomena. These include the melting of ice, combustion, chemical diffusions, liquid crystals, and image processing. One of the main scientific goals of the project is to develop new mathematical tools that can be used to better understand the physical phenomena being modeled. This will create new avenues to analyze them and enhance their comprehension. The investigator will also organize a week-long workshop focused on first-generation undergraduate students who are interested in mathematics. The students will participate in minicourses, attend research talks, and have informal conversations with mathematicians who work in different sectors. The workshop will contribute to the development of a mathematically well-versed and diverse workforce. This project is driven by questions arising in free boundary problems and geometric measure theory. In the applied sciences one often encounters free boundaries, which arise when the solution to a problem consists of a function (often satisfying a partial differential equation) and a set where this function has a specific behavior. The investigator will study a variety of problems that are motivated by the study of the regularity of the function and the geometry of the associated set. These are central questions that are ubiquitous in both theoretical and applied mathematics and can be directly used to model various physical phenomena. The project’s main goal is to contribute to a better understanding of problems involving nonlocal equations, almost minimizers with free boundaries, and minimizers for anisotropic energies. The first class of problems to be investigated involves PDE of fundamental importance for mathematical modeling. In particular, numerous applied phenomena give rise to nonlocal equations, such as nonlocal image processing and liquid crystals. The study of almost minimizers with free boundaries has an outstanding potential to treat a new group of physically motivated problems, as the almost minimizing property can be understood as a minimizing problem with noise. Finally, minimizers for anisotropic energies lead to non-uniformly elliptic PDE, generating new, challenging questions in geometric PDE. The investigator will develop new tools which will address related questions at the interface of free boundary problems and geometric measure theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
偏微分方程(PDE)是物理学的语言。事实上,第一个偏微分方程自然出现在物理学中,试图描述热的传播,波的传播以及电磁学。工程中的许多问题也依赖于偏微分方程的理论,以及近似其解决方案的能力。该项目的科学部分涉及研究模拟各种物理现象的特定PDE家族。这些包括冰的融化,燃烧,化学扩散,液晶和图像处理。该项目的主要科学目标之一是开发新的数学工具,可用于更好地理解正在建模的物理现象。这将创造新的途径来分析它们并增强它们的理解。研究人员还将组织为期一周的研讨会,重点关注对数学感兴趣的第一代本科生。学生将参加小型课程,参加研究会谈,并与在不同部门工作的数学家进行非正式对话。该讲习班将有助于发展一支精通数学和多样化的工作队伍。 这个项目是由自由边界问题和几何测量理论中出现的问题驱动的。在应用科学中,人们经常遇到自由边界,当问题的解决方案由一个函数(通常满足偏微分方程)和一个集合组成时,这个函数具有特定的行为。调查员将研究各种各样的问题,这些问题的动机是研究函数的正则性和相关集合的几何形状。这些都是在理论和应用数学中普遍存在的核心问题,可以直接用于模拟各种物理现象。该项目的主要目标是有助于更好地理解涉及非局部方程,自由边界的几乎极小化器和各向异性能量极小化器的问题。第一类问题的调查涉及PDE的数学建模的根本重要性。特别是,许多应用的现象引起非局部方程,如非局部图像处理和液晶。自由边界几乎极小化问题的研究具有处理一类新的物理问题的巨大潜力,因为几乎极小化性质可以理解为带噪声的极小化问题。最后,各向异性能量极小化导致非均匀椭圆偏微分方程,产生新的,具有挑战性的几何偏微分方程的问题。研究人员将开发新的工具,这将解决在自由边界问题和几何测量theory.This奖项接口的相关问题反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pinnacle sets of signed permutations
Pinnacle 符号排列集
- DOI:10.1016/j.disc.2023.113439
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:González, Nicolle;Harris, Pamela E.;Rojas Kirby, Gordon;Smit Vega Garcia, Mariana;Tenner, Bridget Eileen
- 通讯作者:Tenner, Bridget Eileen
Branch points for (almost-)minimizers of two-phase free boundary problems
两相自由边界问题的(几乎)最小化的分支点
- DOI:10.1017/fms.2022.105
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:David, Guy;Engelstein, Max;Smit Vega Garcia, Mariana;Toro, Tatiana
- 通讯作者:Toro, Tatiana
Mesas of Stirling permutations
斯特林排列的台地
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Gonzalez, N.;Harris, P. E.;Rojas Kirby, G.;Smit Vega Garcia, M.;Tenner, B. E.
- 通讯作者:Tenner, B. E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mariana Smit Vega Garcia其他文献
An epiperimetric inequality approach to the regularity of the free boundary in the Signorini problem with variable coefficients
变系数 Signorini 问题中自由边界正则性的周长不等式方法
- DOI:
10.1016/j.matpur.2015.11.013 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
N. Garofalo;A. Petrosyan;Mariana Smit Vega Garcia - 通讯作者:
Mariana Smit Vega Garcia
On a Bernoulli-type overdetermined free boundary problem
关于伯努利型超定自由边界问题
- DOI:
10.5186/aasfm.2021.4639 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
M. Akman;Agnid Banerjee;Mariana Smit Vega Garcia - 通讯作者:
Mariana Smit Vega Garcia
The singular free boundary in the Signorini problem for variable coefficients
变系数 Signorini 问题中的奇异自由边界
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
N. Garofalo;A. Petrosyan;Mariana Smit Vega Garcia - 通讯作者:
Mariana Smit Vega Garcia
The obstacle problem for the fractional Laplacian with drift
带漂移的分数拉普拉斯障碍问题
- DOI:
10.1016/j.aim.2018.07.021 - 发表时间:
2015 - 期刊:
- 影响因子:1.7
- 作者:
Mariana Smit Vega Garcia - 通讯作者:
Mariana Smit Vega Garcia
The fractional unstable obstacle problem
分数不稳定障碍问题
- DOI:
10.1016/j.na.2019.02.012 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
M. Allen;Mariana Smit Vega Garcia - 通讯作者:
Mariana Smit Vega Garcia
Mariana Smit Vega Garcia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
- 批准号:
2403698 - 财政年份:2024
- 资助金额:
$ 19.03万 - 项目类别:
Standard Grant
HCC: Medium: Grid-Free Monte Carlo Methods for Digital Geometry Processing
HCC:中:用于数字几何处理的无网格蒙特卡罗方法
- 批准号:
2212290 - 财政年份:2022
- 资助金额:
$ 19.03万 - 项目类别:
Standard Grant
Topology and Geometry from 3-Manifolds to Free Groups
从三流形到自由群的拓扑和几何
- 批准号:
2102018 - 财政年份:2021
- 资助金额:
$ 19.03万 - 项目类别:
Continuing Grant
Accurate, geometry-free, computational fluid dynamics
精确、不受几何影响的计算流体动力学
- 批准号:
ST/W000776/1 - 财政年份:2021
- 资助金额:
$ 19.03万 - 项目类别:
Research Grant
Geometry of Free Group Automorphisms: Beyond the Frontier
自由群自同构的几何:超越边界
- 批准号:
1905641 - 财政年份:2018
- 资助金额:
$ 19.03万 - 项目类别:
Continuing Grant
Geometry and Dynamics in Surfaces and Free Group Extensions
曲面中的几何和动力学以及自由群扩展
- 批准号:
1711089 - 财政年份:2017
- 资助金额:
$ 19.03万 - 项目类别:
Standard Grant
Geometry of Free Group Automorphisms: Beyond the Frontier
自由群自同构的几何:超越边界
- 批准号:
1710868 - 财政年份:2017
- 资助金额:
$ 19.03万 - 项目类别:
Continuing Grant
Geometry and dynamics of the outer automorphism group of a free group
自由群外自同构群的几何与动力学
- 批准号:
402300-2011 - 财政年份:2017
- 资助金额:
$ 19.03万 - 项目类别:
Discovery Grants Program - Individual
Differential Equations with singularities on free divisors and related Geometry
自由除数上具有奇点的微分方程及相关几何
- 批准号:
17K05269 - 财政年份:2017
- 资助金额:
$ 19.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Viscosity Measurement by using the Rotational Viscometer with Concentric Cylinder Spindle Geometry for Mass Production of Lead Free Solder
无铅焊料批量生产用同心圆柱轴旋转粘度计测量粘度的研究
- 批准号:
16K06812 - 财政年份:2016
- 资助金额:
$ 19.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)