Non-Asymptotic Random Matrix Theory and Random Graphs
非渐近随机矩阵理论和随机图
基本信息
- 批准号:2054408
- 负责人:
- 金额:$ 23.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is intended to provide new connections between two areas of mathematics, probability and functional analysis. One of the main objects of investigation is a random matrix, a large rectangular array of random data. The Principal Investigator strives to understand the properties of such arrays which hold with high probability and the dependence of those properties on the nature of random entries and the structure of the matrix. This study will have potential applications beyond the realm of pure mathematics, as random matrices are used in statistics, computer algorithms, and wireless communication. A special emphasis will be placed on the study of sparse matrices as these matrices naturally appear in signal reconstruction and big data analysis. Another direction of the research is the study of random graphs, which are random networks of nodes connected by roads (edges). Besides representing real transportation networks, graphs can be used to model interaction of atoms in a material, internet communities, etc. The project provides research training opportunities for graduate students. The main direction of this research is the non-asymptotic theory of random matrices, a new and rapidly developing area of research analyzing spectral characteristics of a random matrix of a large but fixed size and striving to obtain bounds valid with high probability. The Principal Investigator intends to study singular values, eigenvalues, and eigenvectors of different ensembles of random matrices of a large size. The results obtained in this direction would have important applications within the random matrix theory in proving limit laws for the spectral characteristics of random matrices. Another area of study will be the geometric properties of such matrices considered as linear operators between certain normed spaces. Such results can find applications in computer science and signal reconstruction where random matrices are widely used for signal encoding and decoding. Another part of this research will address the problems arising in geometry of random graphs. The Principal Investigator will also concentrate on studying the process of growth of random graphs by analyzing the evolution of corresponding random matrices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究的目的是提供数学,概率和功能分析的两个领域之间的新的连接。研究的主要对象之一是随机矩阵,即随机数据的大型矩形阵列。主要研究者致力于理解这些具有高概率的数组的属性,以及这些属性对随机条目性质和矩阵结构的依赖性。这项研究将具有超越纯数学领域的潜在应用,因为随机矩阵用于统计,计算机算法和无线通信。特别强调稀疏矩阵的研究,因为这些矩阵自然出现在信号重建和大数据分析中。研究的另一个方向是随机图的研究,随机图是由道路(边)连接的节点的随机网络。除了代表真实的交通网络,图形可用于模拟材料中原子的相互作用,互联网社区等项目为研究生提供研究培训机会。本研究的主要方向是随机矩阵的非渐近理论,这是一个新的和迅速发展的研究领域,分析一个大而固定大小的随机矩阵的谱特性,并努力获得高概率有效的界限。主要研究者打算研究奇异值,特征值和特征向量的不同合奏的随机矩阵的大规模。 在这个方向上得到的结果将有重要的应用范围内的随机矩阵理论在证明极限法律的谱特征的随机矩阵。另一个研究领域将是被认为是某些赋范空间之间的线性算子的这种矩阵的几何性质。这些结果可以在计算机科学和信号重构中找到应用,其中随机矩阵被广泛用于信号编码和解码。本研究的另一部分将解决随机图的几何中出现的问题。首席研究员还将通过分析相应的随机矩阵的演变,专注于研究随机图的增长过程。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When a system of real quadratic equations has a solution
- DOI:10.1016/j.aim.2022.108391
- 发表时间:2022-04-15
- 期刊:
- 影响因子:1.7
- 作者:Barvinok, Alexander;Rudelson, Mark
- 通讯作者:Rudelson, Mark
Sharp transition of the invertibility of the adjacency matrices of sparse random graphs
稀疏随机图邻接矩阵可逆性的急剧转变
- DOI:10.1007/s00440-021-01038-4
- 发表时间:2021
- 期刊:
- 影响因子:2
- 作者:Basak, Anirban;Rudelson, Mark
- 通讯作者:Rudelson, Mark
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Rudelson其他文献
Approximately Hadamard Matrices and Riesz Bases in Random Frames
随机框架中的近似 Hadamard 矩阵和 Riesz 基
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1
- 作者:
Xiaoyu Dong;Mark Rudelson - 通讯作者:
Mark Rudelson
On approximation by projections of polytopes with few facets
- DOI:
10.1007/s11856-014-0017-3 - 发表时间:
2015-03-21 - 期刊:
- 影响因子:0.800
- 作者:
Alexander E. Litvak;Mark Rudelson;Nicole Tomczak-Jaegermann - 通讯作者:
Nicole Tomczak-Jaegermann
On the Complexity of the Set of Unconditional Convex Bodies
- DOI:
10.1007/s00454-015-9732-8 - 发表时间:
2015-11-03 - 期刊:
- 影响因子:0.600
- 作者:
Mark Rudelson - 通讯作者:
Mark Rudelson
Mark Rudelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Rudelson', 18)}}的其他基金
Non-Asymptotic Approach in Random Matrix Theory
随机矩阵理论中的非渐近方法
- 批准号:
1807316 - 财政年份:2018
- 资助金额:
$ 23.4万 - 项目类别:
Continuing Grant
Non-Asymptotic Random Matrix Theory and Geometric Functional Analysis
非渐近随机矩阵理论与几何泛函分析
- 批准号:
1464514 - 财政年份:2015
- 资助金额:
$ 23.4万 - 项目类别:
Continuing Grant
Random matrices and geometric functional analysis
随机矩阵和几何泛函分析
- 批准号:
1161372 - 财政年份:2012
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
Non-asymptotic theory of random matrices
随机矩阵的非渐近理论
- 批准号:
1111318 - 财政年份:2010
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
1111319 - 财政年份:2010
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
Non-asymptotic theory of random matrices
随机矩阵的非渐近理论
- 批准号:
0907023 - 财政年份:2009
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0652571 - 财政年份:2007
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
Probabilistic Approach in Geometric Functional Analysis
几何泛函分析中的概率方法
- 批准号:
0556151 - 财政年份:2006
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
Probabilistic Approach in Geometric Functional Analysis
几何泛函分析中的概率方法
- 批准号:
0245380 - 财政年份:2003
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
Probabilistic Approach in Geometric Functional Analysis
几何泛函分析中的概率方法
- 批准号:
0070458 - 财政年份:2000
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
相似海外基金
Asymptotic Problems in Random Dynamics
随机动力学中的渐近问题
- 批准号:
2246704 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Continuing Grant
CAREER: Non-Asymptotic Random Matrix Theory and Connections
职业:非渐近随机矩阵理论和联系
- 批准号:
2237646 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Continuing Grant
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2022-03483 - 财政年份:2022
- 资助金额:
$ 23.4万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2016-06110 - 财政年份:2021
- 资助金额:
$ 23.4万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2016-06110 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
Discovery Grants Program - Individual
Stein's method for functions of multivariate normal random vectors: asymptotic expansions, rates of convergence and applications
多元正态随机向量函数的 Stein 方法:渐近展开、收敛速度和应用
- 批准号:
2481303 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
Studentship
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2016-06110 - 财政年份:2019
- 资助金额:
$ 23.4万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2016-06110 - 财政年份:2018
- 资助金额:
$ 23.4万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic Problems in Random Dynamics
随机动力学中的渐近问题
- 批准号:
1811444 - 财政年份:2018
- 资助金额:
$ 23.4万 - 项目类别:
Continuing Grant
Non-Asymptotic Approach in Random Matrix Theory
随机矩阵理论中的非渐近方法
- 批准号:
1807316 - 财政年份:2018
- 资助金额:
$ 23.4万 - 项目类别:
Continuing Grant