Non-Asymptotic Approach in Random Matrix Theory
随机矩阵理论中的非渐近方法
基本信息
- 批准号:1807316
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research is intended to provide new connections between two areas of mathematics, probability and functional analysis. One of the main objects of investigation is a random matrix, a large rectangular array of random data. The PI strives to understand the properties of such arrays which hold with high probability and the dependence of those properties on the nature of random entries and the structure of the matrix. This study will have potential applications beyond the realm of pure mathematics, as random matrices are used in statistics, computer algorithms, and wireless communication. The PI plans to put a special emphasis on the study of sparse matrices as these matrices naturally appear in signal reconstruction and big data analysis. Another direction of the proposed research is the study of random graphs, which are random networks of nodes connected by roads (edges). Besides representing real transportation networks, graphs can be used to model interaction of atoms in a material, internet communities, etc.The main direction of this research is the non-asymptotic theory of random matrices, a new and rapidly developing area of research analyzing spectral characteristics of a random matrix of a large but fixed size and striving to obtain bounds valid with high probability. The PI intends to study singular values, eigenvalues, and eigenvectors of different ensembles of random matrices of a large size. The results obtained in this direction would have important applications within the random matrix theory in proving limit laws for the spectral characteristics of random matrices. They would be also useful in computer science, as the singular values control the rate of convergence of many numerical algorithms. Another part of the proposed research will address the problems arising in geometry of random graphs This direction is strongly related to random matrix theory as well. The PI will study delocalization and nodal domains of eigenvectors a random graph. The information about them would be valuable in mathematical analysis of congestion in transportation networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拟议的研究旨在提供数学,概率和函数分析两个领域之间的新联系。研究的主要对象之一是随机矩阵,即随机数据的大型矩形阵列。PI致力于理解这些数组的属性,这些属性具有高概率,以及这些属性对随机条目的性质和矩阵结构的依赖性。这项研究将具有超越纯数学领域的潜在应用,因为随机矩阵用于统计,计算机算法和无线通信。PI计划特别强调稀疏矩阵的研究,因为这些矩阵自然会出现在信号重建和大数据分析中。所提出的研究的另一个方向是随机图的研究,随机图是由道路(边)连接的节点的随机网络。除了代表真实的交通网络,图形可以用来模拟原子在材料,互联网社区等的相互作用。本研究的主要方向是随机矩阵的非渐近理论,一个新的和迅速发展的研究领域分析的频谱特性的随机矩阵的一个大的,但固定的大小,并努力获得高概率有效的界限。PI的目的是研究奇异值,特征值和特征向量的不同合奏的随机矩阵的大规模。在这个方向上得到的结果将有重要的应用范围内的随机矩阵理论在证明极限法律的谱特征的随机矩阵。它们在计算机科学中也很有用,因为奇异值控制着许多数值算法的收敛速度。另一部分的拟议研究将解决随机图的几何中出现的问题,这个方向是密切相关的随机矩阵理论以及。PI将研究随机图的特征向量的离域性和节点域.该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The sparse circular law under minimal assumptions.
最小假设下的稀疏圆律。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:2.2
- 作者:Rudelson, Mark;Tikhomirov, Konstantin
- 通讯作者:Tikhomirov, Konstantin
Approximately Hadamard Matrices and Riesz Bases in Random Frames
随机框架中的近似 Hadamard 矩阵和 Riesz 基
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Xiaoyu Dong;Mark Rudelson
- 通讯作者:Mark Rudelson
On the volume of non-central sections of a cube
关于立方体非中心部分的体积
- DOI:10.1016/j.aim.2019.106929
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:König, Hermann;Rudelson, Mark
- 通讯作者:Rudelson, Mark
Random Graph Matching with Improved Noise Robustness
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Cheng Mao;M. Rudelson;K. Tikhomirov
- 通讯作者:Cheng Mao;M. Rudelson;K. Tikhomirov
Size of nodal domains of the eigenvectors of a graph
图的特征向量的节点域的大小
- DOI:10.1002/rsa.20925
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Huang, Han;Rudelson, Mark
- 通讯作者:Rudelson, Mark
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Rudelson其他文献
On approximation by projections of polytopes with few facets
- DOI:
10.1007/s11856-014-0017-3 - 发表时间:
2015-03-21 - 期刊:
- 影响因子:0.800
- 作者:
Alexander E. Litvak;Mark Rudelson;Nicole Tomczak-Jaegermann - 通讯作者:
Nicole Tomczak-Jaegermann
On the Complexity of the Set of Unconditional Convex Bodies
- DOI:
10.1007/s00454-015-9732-8 - 发表时间:
2015-11-03 - 期刊:
- 影响因子:0.600
- 作者:
Mark Rudelson - 通讯作者:
Mark Rudelson
Mark Rudelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Rudelson', 18)}}的其他基金
Non-Asymptotic Random Matrix Theory and Random Graphs
非渐近随机矩阵理论和随机图
- 批准号:
2054408 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Non-Asymptotic Random Matrix Theory and Geometric Functional Analysis
非渐近随机矩阵理论与几何泛函分析
- 批准号:
1464514 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Random matrices and geometric functional analysis
随机矩阵和几何泛函分析
- 批准号:
1161372 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Non-asymptotic theory of random matrices
随机矩阵的非渐近理论
- 批准号:
1111318 - 财政年份:2010
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
1111319 - 财政年份:2010
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Non-asymptotic theory of random matrices
随机矩阵的非渐近理论
- 批准号:
0907023 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0652571 - 财政年份:2007
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Probabilistic Approach in Geometric Functional Analysis
几何泛函分析中的概率方法
- 批准号:
0556151 - 财政年份:2006
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Probabilistic Approach in Geometric Functional Analysis
几何泛函分析中的概率方法
- 批准号:
0245380 - 财政年份:2003
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Probabilistic Approach in Geometric Functional Analysis
几何泛函分析中的概率方法
- 批准号:
0070458 - 财政年份:2000
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
- 批准号:
2023499 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
- 批准号:
2023541 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Asymptotic theoretic approach for pricing derivatives in the regime switching model
政权转换模型中衍生品定价的渐近理论方法
- 批准号:
19K01730 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: An Approach to Pricing, Hedging, Stability, and Asymptotic Analysis in Financial Markets
职业:金融市场的定价、对冲、稳定性和渐近分析方法
- 批准号:
1848339 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Dynamical system approach to the transition structure between asymptotic Turing patterns and the generation of Turing patterns
渐进图灵模式之间的过渡结构和图灵模式生成的动力系统方法
- 批准号:
16K05231 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A theoretical approach to constructing asymptotic solutions to reaction-diffusion systems
构造反应扩散系统渐近解的理论方法
- 批准号:
24540216 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Staffing and Routing in Service Systems with Uncertain Arrival Rates: An Integrated Stochastic Programming and Asymptotic Analysis Approach
协作研究:到达率不确定的服务系统中的人员配置和路由:综合随机规划和渐近分析方法
- 批准号:
1130346 - 财政年份:2011
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Staffing and Routing in Service Systems with Uncertain Arrival Rates: An Integrated Stochastic Programming and Asymptotic Analysis Approach
协作研究:到达率不确定的服务系统中的人员配置和路由:综合随机规划和渐近分析方法
- 批准号:
1130266 - 财政年份:2011
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Scaling of Metal Plasticity on Approach to Nanoscale: Asymptotic Analysis
接近纳米尺度的金属塑性尺度:渐近分析
- 批准号:
0301445 - 财政年份:2003
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
An Asymptotic Expansion Approach to Numerical Problems in Finance
金融数值问题的渐近展开法
- 批准号:
13680509 - 财政年份:2001
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)