Probabilistic Approach in Geometric Functional Analysis
几何泛函分析中的概率方法
基本信息
- 批准号:0070458
- 负责人:
- 金额:$ 6.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-15 至 2004-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI plans to study metric spaces and convex bodies using the methods of Probability. For many problems of Convex Geometry, like finding sections of a convex body with certain nice properties or approximating a convex body by another body, having a better structure, the explicit constructions are unknown. In these cases random constructions were proved to be very effective. It is often possible to define a random section or approximation and to show that it has the desired property with high probability. This approach combined with advanced probabilistic tools, like measure concentration, led to major discoveries in Convex geometry and Functional Analysis, including Dvoretzky's Theorem and inverse Santalo Inequality. The PI intends to apply the probabilistic method to study embeddings of different metric spaces, such as groups, graphs etc., into Banach spaces. These metric spaces are often equipped with a probability measure, which has strong concentration properties. Then it is possible to obtain significant information about the embedding of such metric space into a Banach space by studying the distribution of the image of a random point. Another direction of the proposed research is related to the study of convex bodies, which are not necessary symmetric. The results obtained in the last 3 years by several researchers, including the PI, show that many properties, previously known only for convex symmetric bodies, hold without the assumption of symmetry. The PI plans to continue his work in this area with the aim of constructing a theory of general convex bodies, which would be parallel to the existing theory of convex symmetric bodies.The proposed research will provide new connections between Functional Analysis, Convex Geometry and Probability. The results on embedding graphs into Banach spaces will be useful for finding small separators of graphs. This can lead to construction of more effective algorithms in several Computer Science problems, in particular in numerical solution of partial differential equations. The non-symmetric convex sets, which are one of the main objects of the proposed research, arise naturally in a broad class of optimization problems. So, better understanding of the structure of such bodies will result in constructing more effective optimization algorithms. The stochastic processes related to a convex body are also of considerable interest for the Control Theory.
PI计划使用概率的方法来研究度量空间和凸体。对于凸几何中的许多问题,如求凸体的具有某些优良性质的截面或用另一个具有更好结构的体逼近凸体,其显式构造是未知的。在这些情况下,随机结构被证明是非常有效的。通常可以定义一个随机截面或近似值,并以高概率证明它具有所需的属性。这种方法结合了先进的概率工具,如测量浓度,导致了凸几何和泛函分析的重大发现,包括Dvoretzky定理和逆Santalo不等式。PI打算应用概率方法来研究不同度量空间的嵌入,例如群,图等,Banach空间。这些度量空间通常配备有概率测度,其具有强集中性。通过研究随机点的像的分布,可以得到关于将这种度量空间嵌入到Banach空间的重要信息。所提出的研究的另一个方向与凸体的研究有关,凸体不一定是对称的。包括PI在内的几位研究人员在过去3年中获得的结果表明,许多以前只知道凸对称体的性质在没有对称性假设的情况下仍然成立。PI计划继续他在这一领域的工作,目的是构建一个理论的一般凸体,这将是平行于现有的理论凸对称机构。拟议的研究将提供新的连接之间的功能分析,凸几何和概率。嵌入图到Banach空间的结果将有助于寻找图的小分离器。这可以导致在几个计算机科学问题,特别是在偏微分方程的数值解更有效的算法的建设。非对称凸集,这是所提出的研究的主要对象之一,自然出现在广泛的一类优化问题。因此,更好地了解这种机构的结构将导致构建更有效的优化算法。与凸体有关的随机过程在控制理论中也有相当大的意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Rudelson其他文献
Approximately Hadamard Matrices and Riesz Bases in Random Frames
随机框架中的近似 Hadamard 矩阵和 Riesz 基
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1
- 作者:
Xiaoyu Dong;Mark Rudelson - 通讯作者:
Mark Rudelson
On approximation by projections of polytopes with few facets
- DOI:
10.1007/s11856-014-0017-3 - 发表时间:
2015-03-21 - 期刊:
- 影响因子:0.800
- 作者:
Alexander E. Litvak;Mark Rudelson;Nicole Tomczak-Jaegermann - 通讯作者:
Nicole Tomczak-Jaegermann
On the Complexity of the Set of Unconditional Convex Bodies
- DOI:
10.1007/s00454-015-9732-8 - 发表时间:
2015-11-03 - 期刊:
- 影响因子:0.600
- 作者:
Mark Rudelson - 通讯作者:
Mark Rudelson
Mark Rudelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Rudelson', 18)}}的其他基金
Non-Asymptotic Random Matrix Theory and Random Graphs
非渐近随机矩阵理论和随机图
- 批准号:
2054408 - 财政年份:2021
- 资助金额:
$ 6.72万 - 项目类别:
Standard Grant
Non-Asymptotic Approach in Random Matrix Theory
随机矩阵理论中的非渐近方法
- 批准号:
1807316 - 财政年份:2018
- 资助金额:
$ 6.72万 - 项目类别:
Continuing Grant
Non-Asymptotic Random Matrix Theory and Geometric Functional Analysis
非渐近随机矩阵理论与几何泛函分析
- 批准号:
1464514 - 财政年份:2015
- 资助金额:
$ 6.72万 - 项目类别:
Continuing Grant
Random matrices and geometric functional analysis
随机矩阵和几何泛函分析
- 批准号:
1161372 - 财政年份:2012
- 资助金额:
$ 6.72万 - 项目类别:
Standard Grant
Non-asymptotic theory of random matrices
随机矩阵的非渐近理论
- 批准号:
1111318 - 财政年份:2010
- 资助金额:
$ 6.72万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
1111319 - 财政年份:2010
- 资助金额:
$ 6.72万 - 项目类别:
Standard Grant
Non-asymptotic theory of random matrices
随机矩阵的非渐近理论
- 批准号:
0907023 - 财政年份:2009
- 资助金额:
$ 6.72万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0652571 - 财政年份:2007
- 资助金额:
$ 6.72万 - 项目类别:
Standard Grant
Probabilistic Approach in Geometric Functional Analysis
几何泛函分析中的概率方法
- 批准号:
0556151 - 财政年份:2006
- 资助金额:
$ 6.72万 - 项目类别:
Standard Grant
Probabilistic Approach in Geometric Functional Analysis
几何泛函分析中的概率方法
- 批准号:
0245380 - 财政年份:2003
- 资助金额:
$ 6.72万 - 项目类别:
Standard Grant
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
- 批准号:
22K13904 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A geometric framework approach to understand multi-metal toxicity on individual organisms to evaluate relative risks and benefits of pollution and mit
一种几何框架方法,用于了解多金属对个体生物体的毒性,以评估污染和减排的相对风险和效益
- 批准号:
2881375 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Studentship
Microlocal Analysis - A Unified Approach for Geometric Models in Biology
微局部分析 - 生物学中几何模型的统一方法
- 批准号:
DP220101808 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Discovery Projects
EAGER: Robust Reasoning using a Geometric Approach to SAT and PSAT
EAGER:使用几何方法进行 SAT 和 PSAT 的稳健推理
- 批准号:
2152454 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
Standard Grant
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
- 批准号:
RGPIN-2017-04259 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
Discovery Grants Program - Individual
A Geometric Approach to Simulating Knotting and Entanglement of Slender Objects
模拟细长物体打结和缠结的几何方法
- 批准号:
RGPIN-2021-03733 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
Discovery Grants Program - Individual
Lie superalgebra representations: a geometric approach
李超代数表示:几何方法
- 批准号:
DP220102530 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
Discovery Projects
Non-equilibrium dynamics of integrable quantum systems: An algebro-geometric approach to quantum solitons with exact numerical solutions
可积量子系统的非平衡动力学:具有精确数值解的量子孤子的代数几何方法
- 批准号:
21K03398 - 财政年份:2021
- 资助金额:
$ 6.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
- 批准号:
RGPIN-2017-04259 - 财政年份:2021
- 资助金额:
$ 6.72万 - 项目类别:
Discovery Grants Program - Individual
Study on the nonlinear geometric heat flow via a geometric analysis approach
通过几何分析方法研究非线性几何热流
- 批准号:
21K13824 - 财政年份:2021
- 资助金额:
$ 6.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




