Combinatorial and Algebraic Structures in Dynamics
动力学中的组合和代数结构
基本信息
- 批准号:2054643
- 负责人:
- 金额:$ 35.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
One of the basic problems in dynamical systems, a mathematical structure that models systems such as planetary motion, is to understand what predictions can be made about the evolution of the system in the distant future, and by doing so describe the dynamical properties of the system. A natural way to study dynamical systems is via a coding mechanism, creating a simplified model for a potentially complicated system. The principal investigator will study a series of related problems aimed at understanding how various measurements of complexity of the system relate to its dynamical properties, combining dynamical methods with algebraic and combinatorial, or counting, techniques to study these questions. Along with the research goals of obtaining a deeper understanding of the connections among these fields, the principal investigator will continue work on broadening the cohort of researchers working in these areas. Efforts in this direction include organization of conferences, with numerous meetings aimed at early-career researchers in dynamics, continuation of mentoring programs aimed at diversifying the workforce, and directing undergraduate and graduate students in research. The research carried out consists of the principal investigator building on past results to study topological and ergodic properties of symbolic systems. One series of questions is on their automorphism groups, a way to capture the symmetries of the system, exploring the complicated group structure that arises for more complicated systems and the constraints on the group structure that arise in simpler systems. A second area of focus is on the measurable properties of symbolic systems, studying how the simplex of invariant measures depends on various notions of complexity. The third focus is on higher dimensional systems, relating the complexity of configurations to the dynamical properties of the systems, and the fourth area is the study of nilpotent structures in recurrence and convergence problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力学系统的基本问题之一是理解对系统在遥远的未来的演化可以做出什么预测,并通过这样做来描述系统的动力学特性。研究动力系统的一种自然方法是通过编码机制,为潜在的复杂系统创建一个简化的模型。首席研究员将研究一系列相关问题,旨在了解系统复杂性的各种度量如何与其动力学性质相关,将动力学方法与代数和组合或计数技术相结合来研究这些问题。除了更深入地了解这些领域之间的联系这一研究目标外,首席调查员还将继续努力扩大在这些领域工作的研究人员队伍。在这方面的努力包括组织会议,举办许多会议,以动力学领域的早期职业研究人员为目标,继续开展旨在使劳动力多样化的指导计划,并指导本科生和研究生进行研究。所开展的研究包括主要研究者在过去研究结果的基础上,研究符号系统的拓扑和遍历性质。一系列问题是关于它们的自同构群,一种捕捉系统对称性的方法,探索对于更复杂的系统出现的复杂的群结构,以及在更简单的系统中出现的对群结构的约束。第二个重点领域是符号系统的可测量性质,研究不变度量的单纯形如何依赖于各种复杂概念。第三个重点是高维系统,将配置的复杂性与系统的动力学属性联系起来,第四个领域是研究递归和收敛问题中的幂零结构。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The complexity threshold for the emergence of Kakutani inequivalence
角谷不等式出现的复杂度阈值
- DOI:10.1007/s11856-022-2426-z
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Cyr, Van;Johnson, Aimee;Kra, Bryna;Şahİn, Ayşe
- 通讯作者:Şahİn, Ayşe
Boshernitzan’s condition, factor complexity, and an application
Boshernitzan 的条件、因子复杂性和应用
- DOI:10.1090/bproc/90
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Cyr, Van;Kra, Bryna
- 通讯作者:Kra, Bryna
Infinite Sumsets in Sets with Positive Density
- DOI:10.1090/jams/1030
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Bryna Kra;Joel Moreira;F. Richter;D. Robertson
- 通讯作者:Bryna Kra;Joel Moreira;F. Richter;D. Robertson
Characteristic measures for language stable subshifts
语言稳定子转移的特征测量
- DOI:10.1007/s00605-022-01810-1
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Cyr, Van;Kra, Bryna
- 通讯作者:Kra, Bryna
The Stabilized Automorphism Group of a Subshift
子移的稳定自同构群
- DOI:10.1093/imrn/rnab204
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Hartman, Yair;Kra, Bryna;Schmieding, Scott
- 通讯作者:Schmieding, Scott
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryna Kra其他文献
Convergence of polynomial ergodic averages
多项式遍历平均值的收敛
- DOI:
10.1007/bf02772534 - 发表时间:
2005 - 期刊:
- 影响因子:1
- 作者:
B. Host;Bryna Kra - 通讯作者:
Bryna Kra
Complexity and directional entropy in two dimensions
- DOI:
10.1007/s11856-016-1376-8 - 发表时间:
2016-09-28 - 期刊:
- 影响因子:0.800
- 作者:
Ryan Broderick;Van Cyr;Bryna Kra - 通讯作者:
Bryna Kra
Distortion and the automorphism group of a shift
畸变与位移的自同构群
- DOI:
10.3934/jmd.2018015 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Van Cyr;J. Franks;Bryna Kra;S. Petite - 通讯作者:
S. Petite
Rudolph’s two step coding theorem and Alpern’s lemma for ℝ^{} actions
ℝ^{} 动作的鲁道夫两步编码定理和阿尔彭引理
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Bryna Kra;A. Quas;Ayşe Şahin - 通讯作者:
Ayşe Şahin
The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view
关于素数算术级数的格林-陶定理:遍历的观点
- DOI:
10.1090/s0273-0979-05-01086-4 - 发表时间:
2005 - 期刊:
- 影响因子:1.3
- 作者:
Bryna Kra - 通讯作者:
Bryna Kra
Bryna Kra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryna Kra', 18)}}的其他基金
Structural Properties of Measurable and Topological Dynamical Systems
可测量和拓扑动力系统的结构性质
- 批准号:
2348315 - 财政年份:2024
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
RTG: Dynamics: Classical, Modern, and Quantum
RTG:动力学:古典、现代和量子
- 批准号:
2136217 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
Investigations in Combinatorics and Number Theory via Ergodic Theoretic Methods
通过遍历理论方法研究组合学和数论
- 批准号:
1901453 - 财政年份:2019
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Dynamics with a Combinatorial Bent
具有组合弯曲的动力学
- 批准号:
1800544 - 财政年份:2018
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
GROW 2017: Strengthening women's representation in the mathematics workforce
GROW 2017:加强女性在数学劳动力中的代表性
- 批准号:
1723805 - 财政年份:2017
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
GROW: Strengthening the Mathematical Workforce
成长:加强数学队伍
- 批准号:
1619748 - 财政年份:2016
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Dynamics with a combinatorial flavor
具有组合风味的动态
- 批准号:
1500670 - 财政年份:2015
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
Proposed Conference Support: Ergodic Theory with Connections to Arithmetic
拟议的会议支持:与算术联系的遍历理论
- 批准号:
1301583 - 财政年份:2013
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
The Interplay of Ergodic Theory, Additive Combinatorics, and Harmonic Analysis
遍历理论、加法组合学和调和分析的相互作用
- 批准号:
1200971 - 财政年份:2012
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Combinatorial and Algebraic Aspects of Geometric Structures
几何结构的组合和代数方面
- 批准号:
1922091 - 财政年份:2019
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Real algebraic and combinatorial structures in matrix spaces
矩阵空间中的实代数和组合结构
- 批准号:
1620014 - 财政年份:2016
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
CAREER: Algebraic and Combinatorial Structures In Complexity Theory
职业:复杂性理论中的代数和组合结构
- 批准号:
1350481 - 财政年份:2014
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
Studies of the algebraic and combinatorial structures related to quantum integrable systems
与量子可积系统相关的代数和组合结构的研究
- 批准号:
23340007 - 财政年份:2011
- 资助金额:
$ 35.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Statistical, algebraic and combinatorial structures related to curves on surfaces and three manifolds
与曲面和三个流形上的曲线相关的统计、代数和组合结构
- 批准号:
1105772 - 财政年份:2011
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Algebraic and combinatorial structures in integrable systems
可积系统中的代数和组合结构
- 批准号:
0802511 - 财政年份:2008
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Study on algebraic or combinatorial structures whose automorphism groups contain finite simple groups
自同构群包含有限单群的代数或组合结构的研究
- 批准号:
19340002 - 财政年份:2007
- 资助金额:
$ 35.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Algebraic Combinatorial Structures
代数组合结构
- 批准号:
318704-2005 - 财政年份:2006
- 资助金额:
$ 35.57万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Algebraic Combinatorial Structures
代数组合结构
- 批准号:
318704-2005 - 财政年份:2005
- 资助金额:
$ 35.57万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Algebraic and Geometric Representations of Combinatorial Structures
组合结构的代数和几何表示
- 批准号:
9970270 - 财政年份:1999
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant