Visual Flight Control for the Very Smallest Aerial Vehicles
最小飞行器的视觉飞行控制
基本信息
- 批准号:2054850
- 负责人:
- 金额:$ 88.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to realize autonomous robots as small as bumblebees and even gnats by creating design guidelines for their vision-based control systems. This will have a revolutionary impact on robotics. Compared to larger robots, insect robots will deploy in larger numbers, in more confined spaces, in closer proximity to humans without impact hazard, and do so persistently by collecting small amounts of energy that are available in the environment such as sunlight. As a result they will sense environmental conditions in far greater detail than is currently possible. An important application is locating leaks of the greenhouse gas methane, of which the USA is the world's leading exporter. Other examples include locating incipient fires, monitoring agriculture from within the plant canopy, inspecting confined spaces, and exploring outer space at reduced launch cost. To date, however, robots below a gram have limited sensor and power systems and have not yet performed controlled flight without feedback from external sensors because of extreme size, weight, and power constraints. Our objectives are to better understand how the physics of small scale affects the design of insect-sized feedback control systems. The educational objectives are to drive interest and provide training in engineering and robotics for students in high school through graduate school, particularly minorities. This Foundational Research in Robotics project will address the objective of understanding how the physics of small scale affects the design of insect-sized feedback control systems for flying robots smaller than one gram. In particular, the project’s research activities will include: 1) modelling and analyzing the effects of physical scale on robot sensing, control, and power, 2) designing and analyzing a hovering controller compatible with the constraints of the very smallest, millimeter-sized flying robots, to be released as open source software, and 3) designing and analyzing a system for learning basic visual navigation through a cluttered environment while seeking a source such as a chemical or power (also open source). Findings will be tested in simulation, as well as on a bumblebee-sized 300 mg flapping-wing flying robot and a novel sensor suite. The result will be the first demonstration of stable hovering and obstacle navigation on an insect sized robot. To minimize the power required for feedback control, only passive sensing such as vision, a fly-inspired wind sensor, and exclusively multiply and add operations for computation will be used. Free lesson plans and other online resources to help educators teach students how to design, build, and operate “foldable robotics” inspired by the insect robots used in this work will be created and publicly disseminated.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是通过为基于视觉的控制系统创建设计指南,实现小到大黄蜂甚至小到蚊子的自主机器人。这将对机器人技术产生革命性的影响。与大型机器人相比,昆虫机器人将部署在更有限的空间中,更接近人类而不会产生碰撞危险,并且通过收集环境中可用的少量能量(如阳光)来持续进行部署。因此,它们将比目前可能的更详细地感知环境条件。一个重要的应用是定位温室气体甲烷的泄漏,美国是世界上主要的甲烷出口国。其他例子包括定位初期火灾,从植物冠层内监测农业,检查密闭空间,以及以较低的发射成本探索外层空间。然而,到目前为止,低于1克的机器人具有有限的传感器和动力系统,并且由于极端的尺寸、重量和动力限制,尚未在没有外部传感器反馈的情况下执行受控飞行。我们的目标是更好地了解小尺度的物理学如何影响昆虫大小的反馈控制系统的设计。教育目标是提高高中至研究生院学生,特别是少数民族学生对工程和机器人技术的兴趣并提供培训。这个机器人基础研究项目将致力于了解小尺度物理学如何影响小于1克的飞行机器人的昆虫大小反馈控制系统的设计。特别是,该项目的研究活动将包括:1)对物理尺度对机器人感测、控制和功率的影响进行建模和分析,2)设计和分析一个悬停控制器,它与最小的毫米级飞行机器人的约束兼容,并将作为开源软件发布,以及3)设计和分析用于在寻找诸如化学品或电力的源的同时学习通过杂乱环境的基本视觉导航的系统(开放源代码)。研究结果将在模拟中进行测试,以及在大黄蜂大小的300毫克扑翼飞行机器人和新型传感器套件上进行测试。这将是第一次在昆虫大小的机器人上演示稳定悬停和障碍物导航。为了最大限度地减少反馈控制所需的功率,将仅使用被动传感,如视觉,苍蝇启发的风传感器,以及专门用于计算的乘法和加法运算。 免费的课程计划和其他在线资源,以帮助教育工作者教学生如何设计,建造和操作“可折叠机器人”,灵感来自这项工作中使用的昆虫机器人,将被创建和公开传播。该项目由跨董事会的机器人基础研究计划支持,由工程局(ENG)和计算机与信息科学与工程局(CISE)共同管理和资助该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward sub-gram helicopters: Designing a miniaturized flybar for passive stability
迈向亚克级直升机:设计小型化平衡杆以实现被动稳定性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:K. Johnson, V. Arroyos
- 通讯作者:K. Johnson, V. Arroyos
Towards Sensor Autonomy in Sub-Gram Flying Insect Robots: A Lightweight and Power-Efficient Avionics System
迈向亚克级飞行昆虫机器人的传感器自主化:轻量级、高能效的航空电子系统
- DOI:10.1109/icra46639.2022.9811918
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Talwekar, Yash P.;Adie, Andrew;Iyer, Vikram;Fuller, Sawyer B.
- 通讯作者:Fuller, Sawyer B.
A gyroscope-free visual-inertial flight control and wind sensing system for 10-mg robots
- DOI:10.1126/scirobotics.abq8184
- 发表时间:2022-11
- 期刊:
- 影响因子:25
- 作者:Sawyer B. Fuller;Zhitao Yu;Yash P. Talwekar
- 通讯作者:Sawyer B. Fuller;Zhitao Yu;Yash P. Talwekar
RoboFly: An Insect-Sized Robot With Simplified Fabrication That Is Capable of Flight, Ground, and Water Surface Locomotion
- DOI:10.1109/tro.2021.3075374
- 发表时间:2021-12-01
- 期刊:
- 影响因子:7.8
- 作者:Chukewad, Yogesh M.;James, Johannes;Fuller, Sawyer
- 通讯作者:Fuller, Sawyer
Biology-inspired intelligence in the design, control, and power systems of insect-sized flying robots
昆虫大小的飞行机器人的设计、控制和动力系统中的受生物学启发的智能
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Sawyer B. Fuller
- 通讯作者:Sawyer B. Fuller
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sawyer Fuller其他文献
Sawyer Fuller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
四足机器人Flight Trot步态切换控制方法研究
- 批准号:61903131
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Insect-inspired flapping wing robots: autonomous flight control systems
受昆虫启发的扑翼机器人:自主飞行控制系统
- 批准号:
DP240101140 - 财政年份:2024
- 资助金额:
$ 88.31万 - 项目类别:
Discovery Projects
Design, Control and Flight Demonstration of Bio-Mimetic Surface Pressure Sensor Array-Equipped Morphing Aircraft
仿生表面压力传感器阵列变形飞机设计、控制与飞行演示
- 批准号:
23K17333 - 财政年份:2023
- 资助金额:
$ 88.31万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Integral Intelligence in Insect Flight: sensing, actuation and control
昆虫飞行中的整体智能:传感、驱动和控制
- 批准号:
23H01373 - 财政年份:2023
- 资助金额:
$ 88.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
- 批准号:
2140650 - 财政年份:2022
- 资助金额:
$ 88.31万 - 项目类别:
Standard Grant
Neuronal mechanisms of integrated flight control and goal-directed behaviour in butterfly
蝴蝶综合飞行控制和目标导向行为的神经机制
- 批准号:
BB/X002276/1 - 财政年份:2022
- 资助金额:
$ 88.31万 - 项目类别:
Research Grant
A Computational Model of Visuomotor Systems in Locust Flight Incorporating Plasticity with Applications in Vehicle Control
蝗虫飞行中视觉运动系统的计算模型,将可塑性与车辆控制中的应用相结合
- 批准号:
558548-2021 - 财政年份:2022
- 资助金额:
$ 88.31万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Avian flight dynamics and control - a multidisciplinary approach
鸟类飞行动力学和控制——多学科方法
- 批准号:
2776117 - 财政年份:2022
- 资助金额:
$ 88.31万 - 项目类别:
Studentship
Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
- 批准号:
2142519 - 财政年份:2022
- 资助金额:
$ 88.31万 - 项目类别:
Standard Grant
Methodologies and tools for virtual design and testing of advanced flight control systems
先进飞行控制系统虚拟设计和测试的方法和工具
- 批准号:
542298-2019 - 财政年份:2021
- 资助金额:
$ 88.31万 - 项目类别:
Collaborative Research and Development Grants
Visual guidance rules for the control of flight
飞行控制的目视引导规则
- 批准号:
563430-2021 - 财政年份:2021
- 资助金额:
$ 88.31万 - 项目类别:
University Undergraduate Student Research Awards