Neuronal mechanisms of integrated flight control and goal-directed behaviour in butterfly

蝴蝶综合飞行控制和目标导向行为的神经机制

基本信息

  • 批准号:
    BB/X002276/1
  • 负责人:
  • 金额:
    $ 57.66万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

How are reflexes that stabilise posture integrated with voluntary behaviours? During locomotion, all animals, including humans, maintain a default body orientation under various environmental conditions. When walking on uneven terrain, flying in turbulent air, or swimming through water currents, powerful inner-loop control systems constantly measure external perturbations and generate negative feedback signals to stabilise locomotion. But what happens if an animal wants to change its trajectory, for instance to avoid collisions or to turn towards attractive targets? Movements to those effects would immediately trigger reflexes stabilizing the original body orientation. As a result, the animal would be trapped by its own reflexes.As a solution to this problem, von Holst and Mittelstaedt (1950) proposed that animals generate an 'efference copy' that predicts the sensory response to self-generated movements. The efference copy neutralizes 'reafferent' sensory signals caused by the voluntary movement, thus preventing stabilization reflexes from kicking in. The advantage of using efference copies is that rather than being blocked altogether, the inner-loop continues to stabilise against unwanted perturbations during volitional behaviours.Although efference copies have been suggested to aid sensory processing in vertebrates and invertebrates, experimental evidence demonstrating their use in neural circuits for locomotor control was obtained only recently in fruitflies. Visual interneurons sensing wide-field optic flow (LPTCs) were found to modulate their activity whenever the fly made a volitional turn, either spontaneously, or in response to a threatening object. These modulations were of the appropriate sign and timing to function as efference copies, cancelling reafferent signals experienced during a turn. However, it remains unknown how these neurons are targeted by efference copies, how efference copies are calculated within the brain, and whether they reflect a general mechanism applicable for other behavioural contexts.Ultimately, any information in the brain that is used to coordinate behavioural action must be relayed to motor systems in the body, which in insects is done by descending neurons. In flies, a small number of descending neurons form bi-directional synapses with LPTCs and are sensitive to specific patterns of wide-field optic flow (WFDNs). Positioned between the visual system and motor systems in the thorax, WFDNs are strategically placed for efference copy modulation by central brain regions involved in generating volitional behaviour. Evidence is also emerging of crosstalk between inner- and outer-loop pathways at the level of descending neurons. Thus, WFDNs may represent a pathway for efference copy transmission to LPTCs at a more peripheral stage of the sensorimotor pathway.Recently, we have discovered a multitude of WFDNs in the butterfly, which may function to stabilise specific components of self-motion experienced during the erratic flight characteristic of these creatures. Butterflies are agile fliers equipped with a visual system exquisitely tuned to colour vision and, in some species, to solve navigational outer-loop tasks using various skylight cues. In this project, we aim to understand how inner- and outer-loop behaviours are integrated in butterfly WFDNs. To this end we will characterise the relationship between the butterfly WFDN neurophysiology and free-flight kinematics, and directly probe their function during inner- and outer-loop behaviours in tethered flight. Overall, this project will provide the conceptual framework to advance our understanding of how small circuits of neurons solve the reflex trap in insects, leading us towards more generalisable design principles for integrated sensorimotor control.
稳定姿势的反射如何与自愿行为相结合?在运动过程中,包括人类在内的所有动物在各种环境条件下都保持默认的身体方向。当在不平坦的地形上行走,在湍流中飞行或在水流中游泳时,强大的内环控制系统不断测量外部扰动并产生负反馈信号以稳定运动。但是,如果动物想改变其轨迹,例如避免碰撞或转向有吸引力的目标,会发生什么呢?达到这些效果的动作会立即触发反射,稳定原来的身体方向。为了解决这个问题,von Holst和Mittelstaedt(1950)提出,动物会产生一个“传出复制”,预测对自我产生的运动的感觉反应。传出副本中和了由随意运动引起的“传入”感觉信号,从而阻止了稳定反射。使用传出副本的优点是,而不是被完全封锁,内环继续稳定对不必要的扰动在volitional behaviors.Although传出副本已被建议,以帮助在脊椎动物和无脊椎动物的感觉处理,实验证据表明,它们的使用在运动控制的神经回路中获得最近在果蝇。视觉interneurons感知广域视流(LPTCs)被发现调制他们的活动时,苍蝇作出了一个自愿的转身,无论是自发的,或在一个威胁的对象。这些调制具有适当的符号和时间,以作为传出副本,消除在转弯期间经历的传入信号。然而,这些神经元是如何被传出拷贝所靶向的,传出拷贝在大脑中是如何计算的,以及它们是否反映了适用于其他行为环境的一般机制,这些都是未知的。最终,大脑中用于协调行为动作的任何信息都必须传递到体内的运动系统,这在昆虫中是由下行神经元完成的。在果蝇中,少数下行神经元与LPTC形成双向突触,并对宽视野视流(WFDNs)的特定模式敏感。WFDNs位于胸部的视觉系统和运动系统之间,被策略性地放置用于通过参与产生意志行为的中枢脑区域进行传出复制调制。也有证据表明,在下行神经元的水平上,内环和外环通路之间存在串扰。因此,WFDNs可能代表了一个通路的传出复制传输到LPTCs在更外围阶段的感觉运动pathway.Recently,我们已经发现了大量的WFDNs在蝴蝶,这可能起到稳定的特定组件的自我运动经历这些生物的不稳定的飞行特性。蝴蝶是敏捷的飞行者,配备了一个视觉系统,可以精确地调整颜色视觉,在某些物种中,可以使用各种天窗线索来解决导航外环任务。在这个项目中,我们的目标是了解内部和外部循环的行为是如何集成在蝴蝶WFDNs。为此,我们将研究蝴蝶WFDN神经生理学和自由飞行运动学之间的关系,并直接探测它们在系留飞行中的内环和外环行为中的功能。总的来说,该项目将提供概念框架,以促进我们对神经元小回路如何解决昆虫反射陷阱的理解,引导我们走向更普遍的综合感觉运动控制设计原则。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Holger Krapp其他文献

Holger Krapp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Holger Krapp', 18)}}的其他基金

Tuning of the preferred optic flow axes of locust and blowfly visual interneurons to their preferred modes of flight behaviour
将蝗虫和苍蝇视觉中间神经元的首选光流轴调整为其首选的飞行行为模式
  • 批准号:
    BB/C007336/2
  • 财政年份:
    2006
  • 资助金额:
    $ 57.66万
  • 项目类别:
    Research Grant

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
  • 批准号:
    82371255
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
  • 批准号:
    82370979
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
  • 批准号:
    82370851
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
  • 批准号:
    82371248
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
  • 批准号:
    82371973
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目

相似海外基金

Using integrated omics to identify dysfunctional genetic mechanisms influencing schizophrenia and sleep disturbances
使用整合组学来识别影响精神分裂症和睡眠障碍的功能失调的遗传机制
  • 批准号:
    10770880
  • 财政年份:
    2023
  • 资助金额:
    $ 57.66万
  • 项目类别:
Testing neural mechanisms of sequence monitoring in the frontal cortex across species: integrated fMRI and electrophysiology
测试跨物种额叶皮层序列监测的神经机制:综合功能磁共振成像和电生理学
  • 批准号:
    10563315
  • 财政年份:
    2023
  • 资助金额:
    $ 57.66万
  • 项目类别:
Integrated Treatment for Enhancing Growth in Recovery during Adolescence (InTEGRA)
促进青春期恢复生长的综合治疗 (InTEGRA)
  • 批准号:
    10680616
  • 财政年份:
    2023
  • 资助金额:
    $ 57.66万
  • 项目类别:
Integrated understanding of cell-cell interaction mechanisms underlying brain dysfunction common to brain aging and neurological disorders
综合理解脑衰老和神经系统疾病常见的脑功能障碍背后的细胞间相互作用机制
  • 批准号:
    23H00391
  • 财政年份:
    2023
  • 资助金额:
    $ 57.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collaborative Research: Revealing Strengthening and Toughening Mechanisms in Coconut Endocarp through Integrated Multiscale Modeling and Characterization
合作研究:通过综合多尺度建模和表征揭示椰子内果皮的强化和增韧机制
  • 批准号:
    2316676
  • 财政年份:
    2023
  • 资助金额:
    $ 57.66万
  • 项目类别:
    Continuing Grant
TMJ SYMPHONY Systems-integrated model and mechanisms of patient-centered holistic outcomes and network-supported training and therapy
TMJ SYMPHONY 系统集成模型和以患者为中心的整体结果机制以及网络支持的培训和治疗
  • 批准号:
    10829112
  • 财政年份:
    2023
  • 资助金额:
    $ 57.66万
  • 项目类别:
A Physiologically Integrated Approach to Studying Mechanisms of Speech Production and Swallow Function in Down Syndrome
研究唐氏综合症的言语产生和吞咽功能机制的生理学综合方法
  • 批准号:
    10657309
  • 财政年份:
    2023
  • 资助金额:
    $ 57.66万
  • 项目类别:
Fundamental Biobehavioral Mechanisms Underlying the Integrated Development of Emotion, Attachment, and Nutritive Intake in the Mother-Infant Dyad
母婴二元情感、依恋和营养摄入综合发展的基本生物行为机制
  • 批准号:
    10583348
  • 财政年份:
    2023
  • 资助金额:
    $ 57.66万
  • 项目类别:
Understanding the mechanisms of mycorrhizal suppression of nitrous oxide emission - an integrated approach
了解菌根抑制一氧化二氮排放的机制——一种综合方法
  • 批准号:
    2884024
  • 财政年份:
    2023
  • 资助金额:
    $ 57.66万
  • 项目类别:
    Studentship
An integrated model of mechanisms for improving attitudes toward older adults
改善对老年人态度的机制综合模型
  • 批准号:
    22KJ1007
  • 财政年份:
    2023
  • 资助金额:
    $ 57.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了